Interval Fejer-Type Inequalities for Left and Right-λ-Preinvex Functions in Interval-Valued Settings

被引:19
|
作者
Saeed, Tareq [1 ]
Khan, Muhammad Bilal [2 ]
Treanta, Savin [3 ,4 ,5 ]
Alsulami, Hamed H. [1 ]
Alhodaly, Mohammed Sh [1 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, POB 80203, Jeddah 21589, Saudi Arabia
[2] COMSATS Univ Islamabad, Dept Math, Islamabad 44000, Pakistan
[3] Univ Politehn Bucuresti, Dept Appl Math, Bucharest 060042, Romania
[4] Acad Romanian Scientists, 54 Splaiul Independentei, Bucharest 050094, Romania
[5] Univ Politehn Bucuresti, Fundamental Sci Appl Engn Res Ctr SFAI, Bucharest 060042, Romania
关键词
left and right lambda-preinvex interval-valued function; interval Riemann integral; Hermite-Hadamard-type inequality; Hermite-Hadamard-Fejer-type inequality;
D O I
10.3390/axioms11080368
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For left and right lambda-preinvex interval-valued functions (left and right lambda-preinvex IVFs) in interval-valued Riemann operator settings, we create Hermite-Hadamard (H-H) type inequalities in the current study. Additionally, we create Hermite-Hadamard-Fejer (H-H-Fejer)-type inequalities for preinvex functions of the left and right interval-valued type under some mild conditions. Moreover, some exceptional new and classical cases are also obtained. Some useful examples are also presented to prove the validity of the results.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Some inequalities for interval-valued functions on time scales
    Zhao, Dafang
    Ye, Guoju
    Liu, Wei
    Torres, Delfim F. M.
    SOFT COMPUTING, 2019, 23 (15) : 6005 - 6015
  • [42] Some inequalities for interval-valued functions on time scales
    Dafang Zhao
    Guoju Ye
    Wei Liu
    Delfim F. M. Torres
    Soft Computing, 2019, 23 : 6005 - 6015
  • [43] Fejer-Type Inequalities for Lipschitzian Functions and their Applications
    Hsu, Kai-Chen
    FILOMAT, 2017, 31 (14) : 4531 - 4542
  • [44] An Ostrowski type inequality for interval-valued functions
    Flores-Franulic, Arturo
    Chalco-Cano, Yurilev
    Roman-Flores, Heriberto
    PROCEEDINGS OF THE 2013 JOINT IFSA WORLD CONGRESS AND NAFIPS ANNUAL MEETING (IFSA/NAFIPS), 2013, : 1459 - 1462
  • [45] FRACTIONAL QUANTUM HERMITE-HADAMARD-TYPE INEQUALITIES FOR INTERVAL-VALUED FUNCTIONS
    Cheng, Haiyang
    Zhao, Dafang
    Zhao, Guohui
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (09)
  • [46] Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative
    Chalco-Cano, Y.
    Flores-Franulic, A.
    Roman-Flores, H.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2012, 31 (03): : 457 - 472
  • [47] Some Fractional Hermite-Hadamard Type Inequalities for Interval-Valued Functions
    Shi, Fangfang
    Ye, Guoju
    Zhao, Dafang
    Liu, Wei
    MATHEMATICS, 2020, 8 (04)
  • [48] General interval-valued overlap functions and interval-valued overlap indices
    Asmus, Tiago da Cruz
    Dimuro, Gracaliz Pereira
    Bedregal, Benjamin
    Sanz, Jose Antonio
    Pereira Jr, Sidnei
    Bustince, Humberto
    INFORMATION SCIENCES, 2020, 527 : 27 - 50
  • [49] On Interval-Valued Pseudolinear Functions and Interval-Valued Pseudolinear Optimization Problems
    Zhang, Jianke
    Zheng, Qinghua
    Zhou, Chang
    Ma, Xiaojue
    Li, Lifeng
    JOURNAL OF FUNCTION SPACES, 2015, 2015
  • [50] Some New Classes of Preinvex Fuzzy-Interval-Valued Functions and Inequalities
    Khan, Muhammad Bilal
    Noor, Muhammad Aslam
    Abdullah, Lazim
    Chu, Yu-Ming
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2021, 14 (01) : 1403 - 1418