Interval Fejer-Type Inequalities for Left and Right-λ-Preinvex Functions in Interval-Valued Settings

被引:19
|
作者
Saeed, Tareq [1 ]
Khan, Muhammad Bilal [2 ]
Treanta, Savin [3 ,4 ,5 ]
Alsulami, Hamed H. [1 ]
Alhodaly, Mohammed Sh [1 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, POB 80203, Jeddah 21589, Saudi Arabia
[2] COMSATS Univ Islamabad, Dept Math, Islamabad 44000, Pakistan
[3] Univ Politehn Bucuresti, Dept Appl Math, Bucharest 060042, Romania
[4] Acad Romanian Scientists, 54 Splaiul Independentei, Bucharest 050094, Romania
[5] Univ Politehn Bucuresti, Fundamental Sci Appl Engn Res Ctr SFAI, Bucharest 060042, Romania
关键词
left and right lambda-preinvex interval-valued function; interval Riemann integral; Hermite-Hadamard-type inequality; Hermite-Hadamard-Fejer-type inequality;
D O I
10.3390/axioms11080368
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For left and right lambda-preinvex interval-valued functions (left and right lambda-preinvex IVFs) in interval-valued Riemann operator settings, we create Hermite-Hadamard (H-H) type inequalities in the current study. Additionally, we create Hermite-Hadamard-Fejer (H-H-Fejer)-type inequalities for preinvex functions of the left and right interval-valued type under some mild conditions. Moreover, some exceptional new and classical cases are also obtained. Some useful examples are also presented to prove the validity of the results.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Hermite-Hadamard Type Inclusions for Interval-Valued Coordinated Preinvex Functions
    Lai, Kin Keung
    Mishra, Shashi Kant
    Bisht, Jaya
    Hassan, Mohd
    SYMMETRY-BASEL, 2022, 14 (04):
  • [22] Fuzzy-interval inequalities for generalized preinvex fuzzy interval valued functions
    Khan, Muhammad Bilal
    Srivastava, Hari Mohan
    Mohammed, Pshtiwan Othman
    Guirao, Juan L. G.
    Jawa, Taghreed M.
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (01) : 812 - 835
  • [23] Hermite-Hadamard-type Inequalities for h-preinvex Interval-Valued Functions via Fractional Integral
    Tan, Yun
    Zhao, Dafang
    Sarikaya, Mehmet Zeki
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2023, 16 (01)
  • [24] Wirtinger-type integral inequalities for interval-valued functions
    Costa, T. M.
    Chalco-Cano, Y.
    Roman-Flores, H.
    FUZZY SETS AND SYSTEMS, 2020, 396 : 102 - 114
  • [25] On Gronwall type inequalities for interval-valued functions on time scales
    Awais Younus
    Muhammad Asif
    Khurram Farhad
    Journal of Inequalities and Applications, 2015
  • [26] Fractional Hermite–Hadamard type inequalities for interval-valued functions
    Xuelong Liu
    Gouju Ye
    Dafang Zhao
    Wei Liu
    Journal of Inequalities and Applications, 2019
  • [27] Some generalizations of Opial type inequalities for interval-valued functions
    Zhao, Dafang
    An, Tianqing
    Ye, Guoju
    Liu, Wei
    FUZZY SETS AND SYSTEMS, 2022, 436 : 128 - 151
  • [28] Ostrowski and Cebysev type inequalities for interval-valued functions and applications
    Guo, Jing
    Zhu, Xianjun
    Li, Wenfeng
    Li, Hui
    PLOS ONE, 2023, 18 (09):
  • [29] On Gronwall type inequalities for interval-valued functions on time scales
    Younus, Awais
    Asif, Muhammad
    Farhad, Khurram
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [30] Hermite–Hadamard-type inequalities for interval-valued preinvex functions via Riemann–Liouville fractional integrals
    Nidhi Sharma
    Sanjeev Kumar Singh
    Shashi Kant Mishra
    Abdelouahed Hamdi
    Journal of Inequalities and Applications, 2021