Assessment of Fish Protein Hydrolysates in Juvenile Largemouth Bass (Micropterus salmoides) Diets: Effect on Growth, Intestinal Antioxidant Status, Immunity, and Microflora

被引:20
|
作者
Fan, Ze [1 ]
Wu, Di [1 ]
Li, Jinnan [1 ]
Zhang, Yuanyuan [1 ]
Cui, Zhiying [2 ]
Li, Tianbi [2 ]
Zheng, Xianhu [1 ]
Liu, Hongbai [1 ]
Wang, Liansheng [1 ]
Li, Hongqin [3 ]
机构
[1] Chinese Acad Fishery Sci, Heilongjiang River Fisheries Res Inst, Key Lab Aquat Anim Dis & Immune Technol Heilongjia, Harbin, Peoples R China
[2] Guangdong Xipu Biotechnol Co Ltd, Guangzhou, Peoples R China
[3] New Hope Liuhe Co Ltd, Anim Feed Sci Res Inst, Chengdu, Peoples R China
来源
FRONTIERS IN NUTRITION | 2022年 / 9卷
关键词
fish protein hydrolysates; largemouth bass; protein synthesis; intestinal immunity; intestinal microflora; intestinal health; GUT MICROBIOTA; ATLANTIC COD; DICENTRARCHUS-LABRAX; DIGESTIVE ENZYMES; CYPRINUS-CARPIO; PERFORMANCE; MEAL; EXPRESSION; HORMONE; SUPPLEMENTATION;
D O I
10.3389/fnut.2022.816341
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
Varying dietary inclusion levels of fish protein hydrolysates (FPH) were applied in a feeding experiment with juvenile largemouth bass (Micropterus salmoides) to assess their effects on growth, intestinal antioxidant status, immunity, and microflora. FPH were added in 4 dietary levels: 0 g/kg (control group, FPH-0), 10 g/kg (FPH-10), 30 g/kg (FPH-30), and 50 g/kg (FPH-50) dry matter, respectively substituting 0, 5.3, 16.3, and 27.3% of fish meal with dietary fish meal. Quadruplicate groups of 25 juvenile largemouth bass with initial body weight 9.51 +/- 0.03 g were fed during the 56-day feeding experiment. Experimental results showed that fish fed FPH-30 obtained a significantly higher weight gain rate (WGR), specific growth rate (SGR), protein efficiency ratio (PER), and significant feed conversion rate (FCR) compared to the other three groups (P < 0.05). FPH-30 group also promoted protein synthesis and deposition, as evidenced by the higher whole-body crude protein contents, the higher expressions of GH1, IGF-1, TOR, and S6K in the liver, and SLC7A5, SLC7A8, SLC38A2, and SLC15A2 in the intestine than the other three groups. FPH-30 group could also enhance intestinal health status by increasing the activities of SOD, POD, CAT, GSH-Px, and T-AOC activities by upregulating the expressions of SOD, GSH-Px, IL1 beta, and TNF beta, and by reducing the MDA contents and the expressions of IL15, Caspase 3, Caspase 9, and Caspase 10 than other groups. Compared to the control group, the Actinobacteriota abundance markedly decreased in FPH treatments, while the variation tendency of the phylum Proteobacteria was opposite. The peak value of Firmicutes:Bacteroidetes ratio and the lowest of Bacteroidetes abundance were seen in largemouth bass fed FPH-30 (P < 0.05). Fish in three FPH treatments had lower abundances of opportunistic pathogens Staphylococcus and Plesiomonas than fish in the control group. In conclusion, FPH is a nutritious feed ingredient for juvenile largemouth bass, and can be added to a dietary level of 30 g/kg dry matter replacing fish meal without any negative effect on growth and feed utilization. FPH supplements could also strengthen the intestinal immune mechanisms of largemouth bass to tackle the immunodeficiency produced by fish meal replacement.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Evaluation of Reduced Fish Meal Diets for Second Year Growout of the Largemouth Bass, Micropterus salmoides
    Cochran, Nathan J.
    Coyle, Shawn D.
    Tidwell, James H.
    JOURNAL OF THE WORLD AQUACULTURE SOCIETY, 2009, 40 (06) : 735 - 743
  • [42] Creatine supplementation in largemouth bass (Micropterus salmoides) diets: Improving intestinal health and alleviating enteritis
    Yu, Haodong
    Nie, Yukang
    Zhang, Boran
    Xue, Jiajie
    Xue, Kun
    Huang, Xixuan
    Zhang, Xuezhen
    FISH & SHELLFISH IMMUNOLOGY, 2025, 159
  • [43] Effects of chronic hypoxia on growth performance, antioxidant capacity and protein turnover of largemouth bass (Micropterus salmoides)
    He, Ya
    Yu, Haodong
    Zhang, Ziyi
    Zhang, Jinying
    Kang, Shengchao
    Zhang, Xuezhen
    AQUACULTURE, 2022, 561
  • [44] Effects of Low-Salinity Environments on Growth, Antioxidant Response, and Intestinal Microorganisms of the Largemouth Bass (Micropterus salmoides)
    Lei, Xiting
    Yang, Xia
    Guo, Jianlin
    Zhang, Shihao
    Sun, Shanshan
    Chen, Nihui
    AQUACULTURE RESEARCH, 2023, 2023
  • [45] The Significant Enhancing Effect of Vitamin B6-Fortified Feed on the Intestinal Digestive Efficiency, Immunity, and Antioxidant Defense Mechanisms of Juvenile Largemouth Bass (Micropterus salmoides)
    Zhang, Leimin
    Huang, Dongyu
    Gu, Jiaze
    Liang, Hualiang
    Ren, Mingchun
    ANTIOXIDANTS, 2025, 14 (03)
  • [46] Effects of Virgin Microplastics on Growth, Intestinal Morphology and Microbiota on Largemouth Bass (Micropterus salmoides)
    Zhang, Chaonan
    Wang, Qiujie
    Wang, Shaodan
    Pan, Zhengkun
    Sun, Di
    Cheng, Yanbo
    Zou, Jixing
    Xu, Guohuan
    APPLIED SCIENCES-BASEL, 2021, 11 (24):
  • [47] Effects of dietary oxidized fish oil on growth performance, antioxidant defense system, apoptosis and mitochondrial function of juvenile largemouth bass (Micropterus salmoides)
    Yin, Peng
    Xie, Shiwei
    Huo, Yunjing
    Guo, Tianyu
    Fang, Haohang
    Zhang, Yanmei
    Liu, Yongjian
    Tian, Lixia
    Niu, Jin
    AQUACULTURE, 2019, 500 : 347 - 358
  • [48] Effects of Acetoin on Growth Performance, Digestive Function, Antioxidant Status, and Immune Capacity of Largemouth Bass (Micropterus salmoides)
    Cai, Chunjing
    Li, Zhe
    Lu, Junhua
    Wang, Ying
    Wang, Chen
    Li, Pengfei
    Wang, Hui
    Meng, Wu
    Chu, Jie
    AQUACULTURE RESEARCH, 2023, 2023
  • [49] Growth performance, feed cost and environmental impact of largemouth bass Micropterus salmoides fed low fish meal diets
    Wang, Li
    Cui, Zhenghe
    Ren, Xing
    Li, Peng
    Wang, Yan
    AQUACULTURE REPORTS, 2021, 20
  • [50] Effects of Five Lipid Sources on Growth, Hematological Parameters, Immunity and Muscle Quality in Juvenile Largemouth Bass (Micropterus salmoides)
    Song, Rui
    Yao, Xinfeng
    Jing, Futao
    Yang, Wenxue
    Wu, Jiaojiao
    Zhang, Hao
    Zhang, Penghui
    Xie, Yuanyuan
    Pan, Xuewen
    Zhao, Long
    Wu, Chenglong
    ANIMALS, 2024, 14 (05):