The geometry of L0

被引:17
|
作者
Kalton, N. J. [1 ]
Koldobsky, A.
Yaskin, V.
Yaskina, M.
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Univ Oklahoma, Dept Math, Norman, OK 73019 USA
基金
美国国家科学基金会;
关键词
D O I
10.4153/CJM-2007-044-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose that we have the unit Euclidean ball in R-n and construct new bodies using three operations-linear transformations, closure in the radial metric, and multiplicative summation defined by parallel to x parallel to(K+0L)= root parallel to x parallel to K parallel to x parallel to L. We prove that in dimension 3 this procedure gives all origin-symmetric convex bodies, while this is no longer true in dimensions 4 and higher. We introduce the concept of embedding of a normed space in L-0 that naturally extends the corresponding properties of L-p-spaces with p not equal 0, and show that the procedure described above gives exactly the unit balls of subspaces of L-0 in every dimension. We provide Fourier analytic and geometric characterizations of spaces embedding in L-0, and prove several facts confirming the-place of L-0 in the scale of L-p-spaces.
引用
收藏
页码:1029 / 1049
页数:21
相关论文
共 50 条
  • [31] Extreme amenability of abelian L0 groups
    Sabok, Marcin
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (10) : 2978 - 2992
  • [32] Efficient L0 resampling of point sets
    Cheng, Xuan
    Zeng, Ming
    Lin, Jinpeng
    Wu, Zizhao
    Liu, Xinguo
    COMPUTER AIDED GEOMETRIC DESIGN, 2019, 75
  • [33] Motion Estimation with L0 Norm Regularization
    Chen, Jun
    Cai, Zemin
    Xie, Xiaohua
    Lai, Jianhuang
    2021 IEEE 7TH INTERNATIONAL CONFERENCE ON VIRTUAL REALITY (ICVR 2021), 2021, : 127 - 134
  • [34] L0 SMOOTHING BASED ON GRADIENT CONSTRAINTS
    Akai, Yuji
    Shibata, Toshihiro
    Matsuoka, Ryo
    Okuda, Masahiro
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 3943 - 3947
  • [35] Convex solid subsets of L0(X, μ)
    Schep, AR
    POSITIVITY, 2005, 9 (03) : 491 - 499
  • [36] L0 norm restricted LIC with ADMM
    Kubota, Shohei
    Yoshida, Ryoichiro
    Kuroki, Yoshimitsu
    2018 INTERNATIONAL WORKSHOP ON ADVANCED IMAGE TECHNOLOGY (IWAIT), 2018,
  • [37] Convex Solid Subsets of L0(X, μ)
    Anton R. Schep
    Positivity, 2005, 9 : 491 - 499
  • [38] BANACH-SPACES EMBEDDING INTO L0
    KALTON, NJ
    ISRAEL JOURNAL OF MATHEMATICS, 1985, 52 (04) : 305 - 319
  • [39] The LHCb L0 trigger and related detectors
    Satta, A.
    EUROPEAN PHYSICAL JOURNAL C, 2004, 34 (Suppl 1): : S411 - S417
  • [40] An Adaptive Ridge Procedure for L0 Regularization
    Frommlet, Florian
    Nuel, Gregory
    PLOS ONE, 2016, 11 (02):