Suppose that we have the unit Euclidean ball in R-n and construct new bodies using three operations-linear transformations, closure in the radial metric, and multiplicative summation defined by parallel to x parallel to(K+0L)= root parallel to x parallel to K parallel to x parallel to L. We prove that in dimension 3 this procedure gives all origin-symmetric convex bodies, while this is no longer true in dimensions 4 and higher. We introduce the concept of embedding of a normed space in L-0 that naturally extends the corresponding properties of L-p-spaces with p not equal 0, and show that the procedure described above gives exactly the unit balls of subspaces of L-0 in every dimension. We provide Fourier analytic and geometric characterizations of spaces embedding in L-0, and prove several facts confirming the-place of L-0 in the scale of L-p-spaces.
机构:
Syracuse Univ, Dept Math, Syracuse, NY 13244 USASyracuse Univ, Dept Math, Syracuse, NY 13244 USA
Shen, Lixin
Xu, Yuesheng
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Math & Computat Sci, Guangdong Prov Key Lab Computat Sci, Guangzhou 510275, Guangdong, Peoples R ChinaSyracuse Univ, Dept Math, Syracuse, NY 13244 USA
Xu, Yuesheng
Zeng, Xueying
论文数: 0引用数: 0
h-index: 0
机构:
Ocean Univ China, Sch Math Sci, Qingdao 266100, Peoples R ChinaSyracuse Univ, Dept Math, Syracuse, NY 13244 USA
机构:
Univ Lancaster, Dept Math & Stat, Lancaster LA1 4YW, EnglandUniv Lancaster, Dept Math & Stat, Lancaster LA1 4YW, England
Fearnhead, Paul
Maidstone, Robert
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lancaster, Dept Math & Stat, Lancaster LA1 4YW, England
Univ Lancaster, STOR I Doctoral Training Ctr, Lancaster, EnglandUniv Lancaster, Dept Math & Stat, Lancaster LA1 4YW, England
机构:
Univ London London Sch Econ & Polit Sci, Dept Stat, London WC2A 2AE, EnglandUniv London London Sch Econ & Polit Sci, Dept Stat, London WC2A 2AE, England