Parameter Estimation Using Ensemble-Based Data Assimilation in the Presence of Model Error

被引:26
|
作者
Ruiz, Juan [1 ,2 ]
Pulido, Manuel [3 ,4 ]
机构
[1] Univ Buenos Aires, CIMA, CONICET, DCAO,FCEyN,UMI,IFAECI,CNRS, Buenos Aires, DF, Argentina
[2] RIKEN, AICS, Kobe, Hyogo, Japan
[3] Univ Nacl Nordeste, Dept Phys, IMIT, UNNE,CONICET, Corrientes, Argentina
[4] CNRS, UMI, IFAECI, Buenos Aires, DF, Argentina
关键词
KALMAN FILTER; PART II; MICROPHYSICAL PARAMETERS; CLIMATE ESTIMATION; ATMOSPHERIC STATE; RADAR DATA; COVARIANCE; REPRESENTATION;
D O I
10.1175/MWR-D-14-00017.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This work explores the potential of online parameter estimation as a technique for model error treatment under an imperfect model scenario, in an ensemble-based data assimilation system, using a simple atmospheric general circulation model, and an observing system simulation experiment (OSSE) approach. Model error is introduced in the imperfect model scenario by changing the value of the parameters associated with different schemes. The parameters of the moist convection scheme are the only ones to be estimated in the data assimilation system. In this work, parameter estimation is compared and combined with techniques that account for the lack of ensemble spread and for the systematic model error. The OSSEs show that when parameter estimation is combined with model error treatment techniques, multiplicative and additive inflation or a bias correction technique, parameter estimation produces a further improvement of analysis quality and medium-range forecast skill with respect to the OSSEs with model error treatment techniques without parameter estimation. The improvement produced by parameter estimation is mainly a consequence of the optimization of the parameter values. The estimated parameters do not converge to the value used to generate the observations in the imperfect model scenario; however, the analysis error is reduced and the forecast skill is improved.
引用
收藏
页码:1568 / 1582
页数:15
相关论文
共 50 条
  • [1] Dynamical effects of inflation in ensemble-based data assimilation under the presence of model error
    Scheffler, Guillermo
    Carrassi, Alberto
    Ruiz, Juan
    Pulido, Manuel
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2022, 148 (746) : 2368 - 2383
  • [2] Alignment error models and ensemble-based data assimilation
    Lawson, WG
    Hansen, JA
    MONTHLY WEATHER REVIEW, 2005, 133 (06) : 1687 - 1709
  • [3] Estimating Model Parameters with Ensemble-Based Data Assimilation: Parameter Covariance Treatment
    Jose Ruiz, Juan
    Pulido, Manuel
    Miyoshi, Takemasa
    JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN, 2013, 91 (04) : 453 - 469
  • [4] Ensemble-Based Data Assimilation for Estimation of River Depths
    Wilson, Greg
    Oezkan-Haller, H. Tuba
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2012, 29 (10) : 1558 - 1568
  • [5] Comparison of ensemble-based state and parameter estimation methods for soil moisture data assimilation
    Chen, Weijing
    Huang, Chunlin
    Shen, Huanfeng
    Li, Xin
    ADVANCES IN WATER RESOURCES, 2015, 86 : 425 - 438
  • [6] Model error estimation in ensemble data assimilation
    Gillijns, S.
    De Moor, B.
    NONLINEAR PROCESSES IN GEOPHYSICS, 2007, 14 (01) : 59 - 71
  • [7] Ensemble-based data assimilation
    Zhang, Fuqing
    Snyder, Chris
    BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2007, 88 (04) : 565 - 568
  • [8] Soil model parameter estimation with ensemble data assimilation
    Orescanin, Biljana
    Rajkovic, Borivoj
    Zupanski, Milija
    Zupanski, Dusanka
    ATMOSPHERIC SCIENCE LETTERS, 2009, 10 (02): : 127 - 131
  • [9] Ensemble-based simultaneous state and parameter estimation for treatment of mesoscale model error: A real-data study
    Hu, Xiao-Ming
    Zhang, Fuqing
    Nielsen-Gammon, John W.
    GEOPHYSICAL RESEARCH LETTERS, 2010, 37
  • [10] Geodynamo model and error parameter estimation using geomagnetic data assimilation
    Tangborn, Andrew
    Kuang, Weijia
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2015, 200 (01) : 664 - 675