Soil model parameter estimation with ensemble data assimilation

被引:5
|
作者
Orescanin, Biljana [2 ]
Rajkovic, Borivoj [2 ]
Zupanski, Milija [1 ]
Zupanski, Dusanka [1 ]
机构
[1] Colorado State Univ, Cooperat Inst Res Atmosphere, Ft Collins, CO 80523 USA
[2] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia
来源
ATMOSPHERIC SCIENCE LETTERS | 2009年 / 10卷 / 02期
关键词
data assimilation; soil temperature model; ensemble; KALMAN FILTER; CLIMATE SENSITIVITY; THEORETICAL ASPECTS;
D O I
10.1002/asl.220
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
A parameter estimation problem in context of ensemble data assimilation is addressed. In an example using a one-point soil temperature model, the parameters corresponding to the emissivity and to the effective depth between the surface and the lowest atmospheric model level are estimated together with the initial conditions for temperature. The nonlinear synthetic observations representing various fluxes are assimilated using the Maximum Likelihood Ensemble Filter (MLEF). The results indicate a benefit of simultaneous assimilation of initial conditions and parameters. The estimated uncertainties are in general agreement with actual uncertainties. Copyright (C) 2009 Royal Meteorological Society
引用
收藏
页码:127 / 131
页数:5
相关论文
共 50 条
  • [1] Model error estimation in ensemble data assimilation
    Gillijns, S.
    De Moor, B.
    NONLINEAR PROCESSES IN GEOPHYSICS, 2007, 14 (01) : 59 - 71
  • [2] Comparison of ensemble-based state and parameter estimation methods for soil moisture data assimilation
    Chen, Weijing
    Huang, Chunlin
    Shen, Huanfeng
    Li, Xin
    ADVANCES IN WATER RESOURCES, 2015, 86 : 425 - 438
  • [3] Parameter Estimation Using Ensemble-Based Data Assimilation in the Presence of Model Error
    Ruiz, Juan
    Pulido, Manuel
    MONTHLY WEATHER REVIEW, 2015, 143 (05) : 1568 - 1582
  • [4] Parameter estimation in ensemble based snow data assimilation: A synthetic study
    Su, Hua
    Yang, Zong-Liang
    Niu, Guo-Yue
    Wilson, Clark R.
    ADVANCES IN WATER RESOURCES, 2011, 34 (03) : 407 - 416
  • [5] Evaluation of Model Parameter Convergence when Using Data Assimilation for Soil Moisture Estimation
    Dumedah, Gift
    Walker, Jeffrey P.
    JOURNAL OF HYDROMETEOROLOGY, 2014, 15 (01) : 359 - 375
  • [6] Ensemble data assimilation for ocean biogeochemical state and parameter estimation at different sites
    Gharamti, M. E.
    Tjiputra, J.
    Bethke, I.
    Samuelsen, A.
    Skjelvan, I.
    Bentsen, M.
    Bertino, L.
    OCEAN MODELLING, 2017, 112 : 65 - 89
  • [7] Application of ensemble transform data assimilation methods for parameter estimation in reservoir modeling
    Ruchi, Sangeetika
    Dubinkina, Svetlana
    NONLINEAR PROCESSES IN GEOPHYSICS, 2018, 25 (04) : 731 - 746
  • [8] Model error estimation employing an ensemble data assimilation approach
    Zupanski, Dusanka
    Zupanski, Milija
    MONTHLY WEATHER REVIEW, 2006, 134 (05) : 1337 - 1354
  • [9] Investigation of Data Assimilation Methods for Soil Parameter Estimation with Different Types of Data
    Zha, Yuanyuan
    Zhu, Penghui
    Zhang, Qiuru
    Mao, Wei
    Shi, Liangsheng
    VADOSE ZONE JOURNAL, 2019, 18 (01)
  • [10] Spatiotemporal estimation of model error to improve soil moisture analysis in ensemble Kalman filter data assimilation
    Li, Yize
    Lu, Jianzhong
    Shu, Hong
    Geng, Xiaomeng
    Jiang, Haonan
    JOURNAL OF APPLIED REMOTE SENSING, 2022, 16 (03)