Parameter Estimation Using Ensemble-Based Data Assimilation in the Presence of Model Error

被引:26
|
作者
Ruiz, Juan [1 ,2 ]
Pulido, Manuel [3 ,4 ]
机构
[1] Univ Buenos Aires, CIMA, CONICET, DCAO,FCEyN,UMI,IFAECI,CNRS, Buenos Aires, DF, Argentina
[2] RIKEN, AICS, Kobe, Hyogo, Japan
[3] Univ Nacl Nordeste, Dept Phys, IMIT, UNNE,CONICET, Corrientes, Argentina
[4] CNRS, UMI, IFAECI, Buenos Aires, DF, Argentina
关键词
KALMAN FILTER; PART II; MICROPHYSICAL PARAMETERS; CLIMATE ESTIMATION; ATMOSPHERIC STATE; RADAR DATA; COVARIANCE; REPRESENTATION;
D O I
10.1175/MWR-D-14-00017.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This work explores the potential of online parameter estimation as a technique for model error treatment under an imperfect model scenario, in an ensemble-based data assimilation system, using a simple atmospheric general circulation model, and an observing system simulation experiment (OSSE) approach. Model error is introduced in the imperfect model scenario by changing the value of the parameters associated with different schemes. The parameters of the moist convection scheme are the only ones to be estimated in the data assimilation system. In this work, parameter estimation is compared and combined with techniques that account for the lack of ensemble spread and for the systematic model error. The OSSEs show that when parameter estimation is combined with model error treatment techniques, multiplicative and additive inflation or a bias correction technique, parameter estimation produces a further improvement of analysis quality and medium-range forecast skill with respect to the OSSEs with model error treatment techniques without parameter estimation. The improvement produced by parameter estimation is mainly a consequence of the optimization of the parameter values. The estimated parameters do not converge to the value used to generate the observations in the imperfect model scenario; however, the analysis error is reduced and the forecast skill is improved.
引用
收藏
页码:1568 / 1582
页数:15
相关论文
共 50 条
  • [31] Ensemble Data Assimilation Using a Unified Representation of Model Error
    Piccolo, Chiara
    Cullen, Mike
    MONTHLY WEATHER REVIEW, 2016, 144 (01) : 213 - 224
  • [32] Ensemble-Based Data Assimilation in Reservoir Characterization: A Review
    Jung, Seungpil
    Lee, Kyungbook
    Park, Changhyup
    Choe, Jonggeun
    ENERGIES, 2018, 11 (02)
  • [33] Parameter estimation in ensemble based snow data assimilation: A synthetic study
    Su, Hua
    Yang, Zong-Liang
    Niu, Guo-Yue
    Wilson, Clark R.
    ADVANCES IN WATER RESOURCES, 2011, 34 (03) : 407 - 416
  • [34] Augmenting covariance estimation for ensemble-based data assimilation in multiple-query scenarios
    Ilersich, Andrew F.
    Schau, Kyle A.
    Oefelein, Joseph C.
    Steinberg, Adam M.
    Yano, Masayuki
    COMBUSTION THEORY AND MODELLING, 2022, 26 (06) : 1041 - 1070
  • [35] Sequential ensemble-based optimal design for parameter estimation
    Man, Jun
    Zhang, Jiangjiang
    Li, Weixuan
    Zeng, Lingzao
    Wu, Laosheng
    WATER RESOURCES RESEARCH, 2016, 52 (10) : 7577 - 7592
  • [36] Inference in epidemiological agent-based models using ensemble-based data assimilation
    Javier Cocucci, Tadeo
    Pulido, Manuel
    Pablo Aparicio, Juan
    Ruiz, Juan
    Ignacio Simoy, Mario
    Rosa, Santiago
    PLOS ONE, 2022, 17 (03):
  • [37] Representing model error in ensemble data assimilation
    Cardinali, C.
    Zagar, N.
    Radnoti, G.
    Buizza, R.
    NONLINEAR PROCESSES IN GEOPHYSICS, 2014, 21 (05) : 971 - 985
  • [38] Impact of Instantaneous Parameter Sensitivity on Ensemble-Based Parameter Estimation: Simulation With an Intermediate Coupled Model
    Cao, Lige
    Han, Guijun
    Li, Wei
    Wu, Haowen
    Wu, Xiaobo
    Zhou, Gongfu
    Zheng, Qingyu
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2024, 16 (09)
  • [39] Comparison of ensemble-based data assimilation methods for sparse oceanographic data
    Beiser, Florian
    Holm, Havard Heitlo
    Eidsvik, Jo
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2024, 150 (759) : 1068 - 1095
  • [40] Analysis of the performance of ensemble-based assimilation of production and seismic data
    Emerick, Alexandre A.
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2016, 139 : 219 - 239