Rigidity of complete noncompact bach-flat n-manifolds

被引:6
|
作者
Chu, Yawei [1 ,2 ]
Feng, Pinghua [3 ]
机构
[1] Zhengzhou Univ, Dept Math, Zhengzhou 450001, Peoples R China
[2] Fuyang Teachers Coll, Sch Math & Computat Sci, Fuyang 236037, Peoples R China
[3] Henan Inst Educ, Dept Math, Zhengzhou 450014, Peoples R China
关键词
Bach-flat; Rigidity; Trace-free curvature tensor; Constant curvature space; SCALAR CURVATURE; METRICS; THEOREM;
D O I
10.1016/j.geomphys.2012.06.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (M-n, g) be a complete noncompact Bach-flat n-manifold with the positive Yamabe constant and constant scalar curvature. Assume that the L-2-norm of the trace-free Riemannian curvature tensor (R) over circlem is finite. In this paper, we prove that (M-n, g) is a constant curvature space if the L-n/2-norm of (R) over circlem is sufficiently small. Moreover, we get a gap theorem for (M-n, g) with positive scalar curvature. This can be viewed as a generalization of our earlier resuits of 4-dimensional Bach-flat manifolds with constant scalar curvature R >= 0 [Y.W. Chu, A rigidity theorem for complete noncompact Bach-flat manifolds, J. Geom. Phys. 61 (2011) 516-521]. Furthermore, when n > 9, we derive a rigidity result for R < 0. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2227 / 2233
页数:7
相关论文
共 50 条
  • [31] Bach-flat gradient steady Ricci solitons
    Cao, Huai-Dong
    Catino, Giovanni
    Chen, Qiang
    Mantegazza, Carlo
    Mazzieri, Lorenzo
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 49 (1-2) : 125 - 138
  • [32] Bach-flat asymptotically locally Euclidean metrics
    Gang Tian
    Jeff Viaclovsky
    Inventiones mathematicae, 2005, 160 : 357 - 415
  • [33] BACH-FLAT ISOTROPIC GRADIENT RICCI SOLITONS
    Calvino-Louzao, Esteban
    Garcia-Rio, Eduardo
    Gutierrez-Rodriguez, Ixchel
    Vazquez-Lorenzo, Ramon
    PACIFIC JOURNAL OF MATHEMATICS, 2018, 293 (01) : 75 - 99
  • [34] Bach-flat asymptotically locally Euclidean metrics
    Tian, G
    Viaclovsky, J
    INVENTIONES MATHEMATICAE, 2005, 160 (02) : 357 - 415
  • [35] Topological and affine classification of complete noncompact flat 4-manifolds
    Sadowski, Michal
    JOURNAL OF GEOMETRY AND PHYSICS, 2008, 58 (11) : 1530 - 1539
  • [36] SEIFERT N-MANIFOLDS
    ORLIK, P
    WAGREICH, P
    INVENTIONES MATHEMATICAE, 1975, 28 (02) : 137 - 159
  • [37] A geometrisation of N-manifolds
    Heuer, M.
    Jotz, M.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2024, 184 : 1 - 70
  • [38] SEIFERT N-MANIFOLDS
    WAGREICH, PD
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (06): : A619 - A620
  • [39] IMMERSIONS OF N-MANIFOLDS
    BROWN, EH
    PETERSON, FP
    ADVANCES IN MATHEMATICS, 1977, 24 (01) : 74 - 77
  • [40] SEIFERT N-MANIFOLDS
    ORLIK, PP
    WAGREICH, PD
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (03): : A399 - A400