Rigidity of complete noncompact bach-flat n-manifolds

被引:6
|
作者
Chu, Yawei [1 ,2 ]
Feng, Pinghua [3 ]
机构
[1] Zhengzhou Univ, Dept Math, Zhengzhou 450001, Peoples R China
[2] Fuyang Teachers Coll, Sch Math & Computat Sci, Fuyang 236037, Peoples R China
[3] Henan Inst Educ, Dept Math, Zhengzhou 450014, Peoples R China
关键词
Bach-flat; Rigidity; Trace-free curvature tensor; Constant curvature space; SCALAR CURVATURE; METRICS; THEOREM;
D O I
10.1016/j.geomphys.2012.06.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (M-n, g) be a complete noncompact Bach-flat n-manifold with the positive Yamabe constant and constant scalar curvature. Assume that the L-2-norm of the trace-free Riemannian curvature tensor (R) over circlem is finite. In this paper, we prove that (M-n, g) is a constant curvature space if the L-n/2-norm of (R) over circlem is sufficiently small. Moreover, we get a gap theorem for (M-n, g) with positive scalar curvature. This can be viewed as a generalization of our earlier resuits of 4-dimensional Bach-flat manifolds with constant scalar curvature R >= 0 [Y.W. Chu, A rigidity theorem for complete noncompact Bach-flat manifolds, J. Geom. Phys. 61 (2011) 516-521]. Furthermore, when n > 9, we derive a rigidity result for R < 0. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2227 / 2233
页数:7
相关论文
共 50 条
  • [21] COMPLETE MINIMAL HYPERSURFACES IN HYPERBOLIC N-MANIFOLDS
    ANDERSON, MT
    COMMENTARII MATHEMATICI HELVETICI, 1983, 58 (02) : 264 - 290
  • [22] Bach-Flat Kähler Surfaces
    Claude LeBrun
    The Journal of Geometric Analysis, 2020, 30 : 2491 - 2514
  • [23] Bach-Flat Critical Metrics of the Volume Functional on 4-Dimensional Manifolds with Boundary
    Barros, A.
    Diogenes, R.
    Ribeiro, E., Jr.
    JOURNAL OF GEOMETRIC ANALYSIS, 2015, 25 (04) : 2698 - 2715
  • [24] Bach-Flat Critical Metrics of the Volume Functional on 4-Dimensional Manifolds with Boundary
    A. Barros
    R. Diógenes
    E. Ribeiro
    The Journal of Geometric Analysis, 2015, 25 : 2698 - 2715
  • [25] Rigidity of Noncompact Finsler Manifolds
    Chang-Wan Kim
    Jin-Whan Yim
    Geometriae Dedicata, 2000, 81 : 245 - 259
  • [26] Rigidity of noncompact Finsler manifolds
    Kim, CW
    Yim, JW
    GEOMETRIAE DEDICATA, 2000, 81 (1-3) : 245 - 259
  • [27] Bach-flat Lie groups in dimension 4
    Abbena, Elsa
    Garbiero, Sergio
    Salamon, Simon
    COMPTES RENDUS MATHEMATIQUE, 2013, 351 (7-8) : 303 - 306
  • [28] COMPLETE AND NONCOMPACT CONFORMALLY FLAT MANIFOLDS WITH CONSTANT SCALAR CURVATURE
    KI, UH
    KIM, YH
    GEOMETRIAE DEDICATA, 1991, 40 (01) : 45 - 52
  • [29] ON BACH-FLAT GRADIENT SHRINKING RICCI SOLITONS
    Cao, Huai-Dong
    Chen, Qiang
    DUKE MATHEMATICAL JOURNAL, 2013, 162 (06) : 1149 - 1169
  • [30] Bach-flat gradient steady Ricci solitons
    Huai-Dong Cao
    Giovanni Catino
    Qiang Chen
    Carlo Mantegazza
    Lorenzo Mazzieri
    Calculus of Variations and Partial Differential Equations, 2014, 49 : 125 - 138