Information-Theoretical Quantifier of Brain Rhythm Based on Data-Driven Multiscale Representation

被引:1
|
作者
Choi, Young-Seok [1 ,2 ]
机构
[1] Gangneung Wonju Natl Univ, Dept Elect Engn, Kangnung 210702, South Korea
[2] Gangneung Wonju Natl Univ, Res Inst Dent Engn, Kangnung 210702, South Korea
基金
新加坡国家研究基金会;
关键词
EMPIRICAL MODE DECOMPOSITION; QUANTITATIVE EEG; WAVELET ENTROPY; CARDIAC-ARREST; HYPOTHERMIA; DYNAMICS; TOOL;
D O I
10.1155/2015/830926
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
This paper presents a data-driven multiscale entropy measure to reveal the scale dependent information quantity of electroencephalogram (EEG) recordings. This work is motivated by the previous observations on the nonlinear and nonstationary nature of EEG over multiple time scales. Here, a new framework of entropy measures considering changing dynamics over multiple oscillatory scales is presented. First, to deal with nonstationarity over multiple scales, EEG recording is decomposed by applying the empirical mode decomposition (EMD) which is known to be effective for extracting the constituent narrowband components without a predetermined basis. Following calculation of Renyi entropy of the probability distributions of the intrinsic mode functions extracted by EMD leads to a data-driven multiscale Renyi entropy. To validate the performance of the proposed entropy measure, actual EEG recordings from rats (n = 9) experiencing 7 min cardiac arrest followed by resuscitation were analyzed. Simulation and experimental results demonstrate that the use of the multiscale Renyi entropy leads to better discriminative capability of the injury levels and improved correlations with the neurological deficit evaluation after 72 hours after cardiac arrest, thus suggesting an effective diagnostic and prognostic tool.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] A data-driven multiscale model for reactive wetting simulations
    Ray, Jaideep
    Horner, Jeffrey S.
    Winter, Ian
    Kemmenoe, David J.
    Arata, Edward R.
    Chandross, Michael
    Roberts, Scott A.
    Grillet, Anne M.
    COMPUTERS & FLUIDS, 2024, 276
  • [32] Methods for data-driven multiscale model discovery for materials
    Brunton, Steven L.
    Kutz, J. Nathan
    JOURNAL OF PHYSICS-MATERIALS, 2019, 2 (04):
  • [33] A Data-Driven Representation for Sign Language Production
    Walsh, Harry
    Ravanshad, Abolfazl
    Rahmani, Mariam
    Bowden, Richard
    2024 IEEE 18TH INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION, FG 2024, 2024,
  • [34] Information-theoretical analysis of gene expression data to infer transcriptional interactions
    Baca-Lopez, K.
    Hernandez-Lemus, E.
    Mayorga, M.
    REVISTA MEXICANA DE FISICA, 2009, 55 (06) : 456 - 466
  • [35] Data-Driven Soft Sensor for Hot Strip Mill Process Based on Multiscale Information-Fusion Attention Network
    Xue, Jianye
    Li, Kang
    Zhang, Tongshuai
    Ye, Hao
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [36] On Data-Driven Histogram-Based Estimation for Mutual Information
    Silva, Jorge
    Narayanan, Shrikanth S.
    2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, : 1423 - 1427
  • [37] Data-Driven Human Modeling by Sparse Representation
    Wu, Yiu-Bun
    Liu, Bin
    Liu, Xiuping
    Wang, Charlie C. L.
    COMPUTER-AIDED DESIGN, 2020, 128
  • [38] Data-driven statistical nonlinearization technique based on information entropy
    Liu, Jinguo
    Tang, Bo
    Xu, Ming
    PROBABILISTIC ENGINEERING MECHANICS, 2022, 70
  • [39] Data-driven approaches to information access
    Dumais, S
    COGNITIVE SCIENCE, 2003, 27 (03) : 491 - 524
  • [40] Theoretical and Data-Driven Approaches for Biomolecular Condensates
    Saar, Kadi L.
    Qian, Daoyuan
    Good, Lydia L.
    Morgunov, Alexey S.
    Collepardo-Guevara, Rosana
    Best, Robert B.
    Knowles, Tuomas P. J.
    CHEMICAL REVIEWS, 2023, 123 (14) : 8988 - 9009