Information-Theoretical Quantifier of Brain Rhythm Based on Data-Driven Multiscale Representation

被引:1
|
作者
Choi, Young-Seok [1 ,2 ]
机构
[1] Gangneung Wonju Natl Univ, Dept Elect Engn, Kangnung 210702, South Korea
[2] Gangneung Wonju Natl Univ, Res Inst Dent Engn, Kangnung 210702, South Korea
基金
新加坡国家研究基金会;
关键词
EMPIRICAL MODE DECOMPOSITION; QUANTITATIVE EEG; WAVELET ENTROPY; CARDIAC-ARREST; HYPOTHERMIA; DYNAMICS; TOOL;
D O I
10.1155/2015/830926
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
This paper presents a data-driven multiscale entropy measure to reveal the scale dependent information quantity of electroencephalogram (EEG) recordings. This work is motivated by the previous observations on the nonlinear and nonstationary nature of EEG over multiple time scales. Here, a new framework of entropy measures considering changing dynamics over multiple oscillatory scales is presented. First, to deal with nonstationarity over multiple scales, EEG recording is decomposed by applying the empirical mode decomposition (EMD) which is known to be effective for extracting the constituent narrowband components without a predetermined basis. Following calculation of Renyi entropy of the probability distributions of the intrinsic mode functions extracted by EMD leads to a data-driven multiscale Renyi entropy. To validate the performance of the proposed entropy measure, actual EEG recordings from rats (n = 9) experiencing 7 min cardiac arrest followed by resuscitation were analyzed. Simulation and experimental results demonstrate that the use of the multiscale Renyi entropy leads to better discriminative capability of the injury levels and improved correlations with the neurological deficit evaluation after 72 hours after cardiac arrest, thus suggesting an effective diagnostic and prognostic tool.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] Data-driven multiscale simulation of FRP based on material twins
    Huang, Wei
    Xu, Rui
    Yang, Jie
    Huang, Qun
    Hu, Heng
    COMPOSITE STRUCTURES, 2021, 256
  • [12] Data-driven multiscale method for composite plates
    Wei Yan
    Wei Huang
    Qun Huang
    Jie Yang
    Gaetano Giunta
    Salim Belouettar
    Heng Hu
    Computational Mechanics, 2022, 70 : 1025 - 1040
  • [13] Multiscale Data-Driven Energy Estimation and Generation
    Marchand, Tanguy
    Ozawa, Misaki
    Biroli, Giulio
    Mallat, Stéphane
    Physical Review X, 2023, 13 (04):
  • [14] Direct data-driven algorithms for multiscale mechanics
    Prume, E.
    Gierden, C.
    Ortiz, M.
    Reese, S.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 433
  • [15] Data-Driven Multiscale Science for Tread Compounding
    Burkhart, Craig
    Jiang, Bing
    Papakonstantopoulos, George
    Polinska, Patrycja
    Xu, Hongyi
    Sheridan, Richard J.
    Brinson, L. Catherine
    Chen, Wei
    TIRE SCIENCE AND TECHNOLOGY, 2023, 51 (02) : 114 - 131
  • [16] Descriptive multiscale modeling in data-driven neuroscience
    Haueis, Philipp
    SYNTHESE, 2022, 200 (02)
  • [17] Descriptive multiscale modeling in data-driven neuroscience
    Philipp Haueis
    Synthese, 2022, 200
  • [18] Data-driven multiscale method for composite plates
    Yan, Wei
    Huang, Wei
    Huang, Qun
    Yang, Jie
    Giunta, Gaetano
    Belouettar, Salim
    Hu, Heng
    COMPUTATIONAL MECHANICS, 2022, 70 (05) : 1025 - 1040
  • [19] Data-Driven Inference of Representation Invariants
    Miltner, Anders
    Padhi, Saswat
    Millstein, Todd
    Walker, David
    PROCEEDINGS OF THE 41ST ACM SIGPLAN CONFERENCE ON PROGRAMMING LANGUAGE DESIGN AND IMPLEMENTATION (PLDI '20), 2020, : 1 - 15
  • [20] Data-driven information for action
    Wulff, Kristin
    Finnestrand, Hanne
    GIO-GRUPPE-INTERAKTION-ORGANISATION-ZEITSCHRIFT FUER ANGEWANDTE ORGANISATIONSPSYCHOLOGIE, 2023, 54 (01): : 65 - 77