On weak boundary representations and quasi hyperrigidity for operator systems

被引:1
|
作者
Arunkumar, C. S. [1 ]
Vijayarajan, A. K. [1 ]
机构
[1] Kerala Sch Math, Calicut 673571, Kerala, India
来源
JOURNAL OF ANALYSIS | 2022年 / 30卷 / 03期
关键词
Operator system; Completely positive map; Weak unique extension property; Weak boundary representation; Quasi hyperrigid sets; TENSOR-PRODUCTS;
D O I
10.1007/s41478-022-00405-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a unital C-*-algebra and S be an operator system in A. It is shown that, an irreducible representation pi of A is a weak boundary representation for S if and only if its n-amplification pi((n)) is a weak boundary representation for the operator system M-n(S)for any n >= 2. Also, we deduce that the operator system S is quasi hyperrigid in A if and only if the operator system M-n(S) is quasi hyperrigid in M-n(A) any n >= 2.
引用
收藏
页码:1219 / 1227
页数:9
相关论文
共 50 条