On weak boundary representations and quasi hyperrigidity for operator systems

被引:1
|
作者
Arunkumar, C. S. [1 ]
Vijayarajan, A. K. [1 ]
机构
[1] Kerala Sch Math, Calicut 673571, Kerala, India
来源
JOURNAL OF ANALYSIS | 2022年 / 30卷 / 03期
关键词
Operator system; Completely positive map; Weak unique extension property; Weak boundary representation; Quasi hyperrigid sets; TENSOR-PRODUCTS;
D O I
10.1007/s41478-022-00405-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a unital C-*-algebra and S be an operator system in A. It is shown that, an irreducible representation pi of A is a weak boundary representation for S if and only if its n-amplification pi((n)) is a weak boundary representation for the operator system M-n(S)for any n >= 2. Also, we deduce that the operator system S is quasi hyperrigid in A if and only if the operator system M-n(S) is quasi hyperrigid in M-n(A) any n >= 2.
引用
收藏
页码:1219 / 1227
页数:9
相关论文
共 50 条
  • [21] Approximate frame representations via iterated operator systems
    Christensen, Ole
    Hasannasab, Marzieh
    STUDIA MATHEMATICA, 2022, 263 (01) : 1 - 18
  • [22] Extreme states and boundary representations of operator spaces in ternary rings of operators
    Shabna, A. M.
    Vijayarajan, A. K.
    Arunkumar, C. S.
    Syamkrishnan, M. S.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024, 23 (05)
  • [23] BOUNDARY REPRESENTATIONS OF OPERATOR SPACES AND COMPACT RECTANGULAR MATRIX CONVEX SETS
    Fuller, Adam H.
    Hartz, Michael
    Lupini, Martino
    JOURNAL OF OPERATOR THEORY, 2018, 79 (01) : 139 - 172
  • [24] Z-HYPERRIGIDITY AND Z-BOUNDARY REPRESENTA- TIONS
    Anjali, V. A.
    Augustine, Athul
    Shankar, P.
    3C EMPRESA, 2022, 11 (02): : 173 - 184
  • [25] Hilbert modules characterization for weak hyperrigid operator systems
    Shankar, P.
    Vijayarajan, A. K.
    JOURNAL OF ANALYSIS, 2020, 28 (04): : 905 - 912
  • [26] Hilbert modules characterization for weak hyperrigid operator systems
    P. Shankar
    A. K. Vijayarajan
    The Journal of Analysis, 2020, 28 : 905 - 912
  • [27] Modal systems for covering semantics and boundary operator
    Patel, Vineeta Singh
    Khan, Md Aquil
    Chakraborty, Mihir Kumar
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2021, 135 : 110 - 126
  • [28] Passive Systems with a Normal Main Operator and Quasi-selfadjoint Systems
    Yury M. Arlinskiĭ
    Seppo Hassi
    Henk S. V. de Snoo
    Complex Analysis and Operator Theory, 2009, 3 : 19 - 56
  • [29] Passive Systems with a Normal Main Operator and Quasi-selfadjoint Systems
    Arlinskii, Yury M.
    Hassi, Seppo
    de Snoo, Henk S. V.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2009, 3 (01) : 19 - 56