On weak boundary representations and quasi hyperrigidity for operator systems

被引:1
|
作者
Arunkumar, C. S. [1 ]
Vijayarajan, A. K. [1 ]
机构
[1] Kerala Sch Math, Calicut 673571, Kerala, India
来源
JOURNAL OF ANALYSIS | 2022年 / 30卷 / 03期
关键词
Operator system; Completely positive map; Weak unique extension property; Weak boundary representation; Quasi hyperrigid sets; TENSOR-PRODUCTS;
D O I
10.1007/s41478-022-00405-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a unital C-*-algebra and S be an operator system in A. It is shown that, an irreducible representation pi of A is a weak boundary representation for S if and only if its n-amplification pi((n)) is a weak boundary representation for the operator system M-n(S)for any n >= 2. Also, we deduce that the operator system S is quasi hyperrigid in A if and only if the operator system M-n(S) is quasi hyperrigid in M-n(A) any n >= 2.
引用
收藏
页码:1219 / 1227
页数:9
相关论文
共 50 条
  • [1] On weak boundary representations and quasi hyperrigidity for operator systems
    C. S. Arunkumar
    A. K. Vijayarajan
    The Journal of Analysis, 2022, 30 : 1219 - 1227
  • [2] Quasi hyperrigidity and weak peak points for non-commutative operator systems
    M N N Namboodiri
    S Pramod
    P Shankar
    A K Vijayarajan
    Proceedings - Mathematical Sciences, 2018, 128
  • [3] Quasi hyperrigidity and weak peak points for non-commutative operator systems
    Namboodiri, M. N. N.
    Pramod, S.
    Shankar, P.
    Vijayarajan, A. K.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2018, 128 (05):
  • [4] Boundary representations and rectangular hyperrigidity
    Arunkumar, C. S.
    Shankar, P.
    Vijayarajan, A. K.
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2021, 15 (02)
  • [5] Boundary representations and rectangular hyperrigidity
    C. S. Arunkumar
    P. Shankar
    A. K. Vijayarajan
    Banach Journal of Mathematical Analysis, 2021, 15
  • [6] Unperforated Pairs of Operator Spaces and Hyperrigidity of Operator Systems
    Clouatre, Raphael
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2018, 70 (06): : 1236 - 1260
  • [7] Local boundary representations for local operator systems
    Joita, Maria
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 535 (02)
  • [8] Multiplier algebras of complete Nevanlinna Pick spaces: Dilations, boundary representations and hyperrigidity
    Clouatre, Raphael
    Hartz, Michael
    JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 274 (06) : 1690 - 1738
  • [9] Quantized Hilbert modules over local operator algebras and hyperrigidity of local operator systems
    Beniwal, Surbhi
    Kumar, Ajay
    Luthra, Preeti
    ANNALS OF FUNCTIONAL ANALYSIS, 2022, 13 (01)
  • [10] Quantized Hilbert modules over local operator algebras and hyperrigidity of local operator systems
    Surbhi Beniwal
    Ajay Kumar
    Preeti Luthra
    Annals of Functional Analysis, 2022, 13