Incremental projection approach of regularization for inverse problems

被引:5
|
作者
Souopgui, Innocent [1 ]
Ngodock, Hans E. [2 ]
Vidard, Arthur [3 ]
Le Dimet, Francois-Xavier [3 ]
机构
[1] Univ Southern Mississippi, Dept Marine Sci, 1020 Balch Blvd, Stennis Space Ctr, MS 39529 USA
[2] Naval Res Lab, 1009 Balch Blvd, Stennis Space Ctr, MS 39529 USA
[3] Lab Jean Kuntzmann, 51 Rue Maths, F-38400 St Martin Dheres, France
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2016年 / 74卷 / 02期
关键词
Regularization; Projection; Inverse problems; Motion estimation; ILL-POSED PROBLEMS; COMPUTING OPTICAL-FLOW; THRESHOLDING ALGORITHM; IMAGE MOTION; COMPUTATION;
D O I
10.1007/s00245-015-9315-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents an alternative approach to the regularized least squares solution of ill-posed inverse problems. Instead of solving a minimization problem with an objective function composed of a data term and a regularization term, the regularization information is used to define a projection onto a convex subspace of regularized candidate solutions. The objective function is modified to include the projection of each iterate in the place of the regularization. Numerical experiments based on the problem of motion estimation for geophysical fluid images, show the improvement of the proposed method compared with regularization methods. For the presented test case, the incremental projection method uses 7 times less computation time than the regularization method, to reach the same error target. Moreover, at convergence, the incremental projection is two order of magnitude more accurate than the regularization method.
引用
收藏
页码:303 / 324
页数:22
相关论文
共 50 条
  • [1] Incremental projection approach of regularization for inverse problems
    Innocent Souopgui
    Hans E. Ngodock
    Arthur Vidard
    François-Xavier Le Dimet
    Applied Mathematics & Optimization, 2016, 74 : 303 - 324
  • [2] Regularization by Architecture: A Deep Prior Approach for Inverse Problems
    Dittmer, Soren
    Kluth, Tobias
    Maass, Peter
    Baguer, Daniel Otero
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2020, 62 (03) : 456 - 470
  • [3] Regularization by Architecture: A Deep Prior Approach for Inverse Problems
    Sören Dittmer
    Tobias Kluth
    Peter Maass
    Daniel Otero Baguer
    Journal of Mathematical Imaging and Vision, 2020, 62 : 456 - 470
  • [4] Regularization and inverse problems
    Lasenby, A
    Barreiro, B
    Hobson, M
    MINING THE SKY, 2001, : 15 - 32
  • [5] REGULARIZATION AND INVERSE PROBLEMS
    SIBISI, S
    MAXIMUM ENTROPY AND BAYESIAN METHODS /, 1989, 36 : 389 - 396
  • [6] REGULARIZATION OF INVERSE PROBLEMS
    ROMANOVSKII, MR
    HIGH TEMPERATURE, 1980, 18 (01) : 135 - 140
  • [7] Optimal discretization of inverse problems in Hilbert scales.: Regularization and self-regularization of projection methods
    Mathé, P
    Pereverzev, SV
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2001, 38 (06) : 1999 - 2021
  • [8] REGULARIZATION OF MULTIDIMENSIONAL INVERSE PROBLEMS FOR HYPERBOLIC-EQUATIONS BASED ON A PROJECTION METHOD
    KABANIKHIN, SI
    DOKLADY AKADEMII NAUK SSSR, 1987, 292 (03): : 534 - 537
  • [9] AN AUGMENTED LAGRANGIAN APPROACH TO LINEAR INVERSE PROBLEMS WITH COMPOUND REGULARIZATION
    Afonso, Manya V.
    Bioucas-Dias, Jose M.
    Figueiredo, Mario A. T.
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 4169 - 4172
  • [10] Regularization networks for inverse problems: A state-space approach
    De Nicolao, G
    Ferrari-Trecate, G
    AUTOMATICA, 2003, 39 (04) : 669 - 676