Post-Lie algebra structures on pairs of Lie algebras

被引:26
|
作者
Burde, Dietrich [1 ]
Dekimpe, Karel [2 ]
机构
[1] Univ Vienna, Fak Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] Katholieke Univ Leuven, Campus Kortrijk, B-8500 Kortrijk, Belgium
基金
奥地利科学基金会;
关键词
Post-Lie algebra; Pre-Lie algebra; GENERALIZED DERIVATIONS; AFFINE ACTIONS;
D O I
10.1016/j.jalgebra.2016.05.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study post-Lie algebra structures on pairs of Lie algebras (g, n), which describe simply transitive nil-affine actions of Lie groups. We prove existence results for such structures depending on the interplay of the algebraic structures of g and n. We consider the classes of simple, semisimple, reductive, perfect, solvable, nilpotent, abelian and unimodular Lie algebras. Furthermore we consider commutative post-Lie algebra structures on perfect Lie algebras. Using Lie algebra cohomology we can classify such structures in several cases. We also study commutative structures on low-dimensional Lie algebras and on nilpotent Lie algebras. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:226 / 245
页数:20
相关论文
共 50 条
  • [31] Functorial PBW theorems for post-Lie algebras
    Dotsenko, Vladimir
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (05) : 2072 - 2080
  • [32] Post-symmetric braces and integration of post-Lie algebras
    Mencattini, Igor
    Quesney, Alexandre
    Silva, Pryscilla
    JOURNAL OF ALGEBRA, 2020, 556 : 547 - 580
  • [33] COMPATIBLE ALGEBRA STRUCTURES OF LIE ALGEBRAS
    Kubo, F.
    RING THEORY 2007, PROCEEDINGS, 2009, : 235 - 239
  • [34] Poincare-Birkhoff-Witt Theorem for Pre-Lie and Post-Lie Algebras
    Gubarev, Vsevolod
    JOURNAL OF LIE THEORY, 2020, 30 (01) : 223 - 238
  • [35] Homotopy Rota-Baxter operators and post-Lie algebras
    Tang, Rong
    Bai, Chengming
    Guo, Li
    Sheng, Yunhe
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2023, 17 (01) : 1 - 35
  • [36] On post-Lie Algebra Structures Coming from Simply Transitive NIL-Affine Actions
    Dere, Jonas
    Origlia, Marcos
    TRANSFORMATION GROUPS, 2025,
  • [37] GRADED POST-LIE ALGEBRA STRUCTURES AND HOMOGENEOUS ROTA-BAXTER OPERATORS ON THE SCHRODINGER-VIRASORO ALGEBRA
    Xu, Pengliang
    Tang, Xiaomin
    ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (04): : 2771 - 2789
  • [38] Hom-Lie algebra structures on semi-simple Lie algebras
    Jin, Quanqin
    Li, Xiaochao
    JOURNAL OF ALGEBRA, 2008, 319 (04) : 1398 - 1408
  • [39] On Post-Lie Algebras, Lie-Butcher Series and Moving Frames (vol 13, pg 583, 2013)
    Munthe-Kaas, Hans Z.
    Lundervold, Alexander
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2019, 19 (01) : 241 - 241
  • [40] Super-biderivations and Post-Lie Superalgebras on Some Lie Superalgebras
    Munayim DILXAT
    Shou Lan GAO
    Dong LIU
    Acta Mathematica Sinica,English Series, 2023, (09) : 1736 - 1754