Post-Lie algebra structures on pairs of Lie algebras

被引:26
|
作者
Burde, Dietrich [1 ]
Dekimpe, Karel [2 ]
机构
[1] Univ Vienna, Fak Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] Katholieke Univ Leuven, Campus Kortrijk, B-8500 Kortrijk, Belgium
基金
奥地利科学基金会;
关键词
Post-Lie algebra; Pre-Lie algebra; GENERALIZED DERIVATIONS; AFFINE ACTIONS;
D O I
10.1016/j.jalgebra.2016.05.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study post-Lie algebra structures on pairs of Lie algebras (g, n), which describe simply transitive nil-affine actions of Lie groups. We prove existence results for such structures depending on the interplay of the algebraic structures of g and n. We consider the classes of simple, semisimple, reductive, perfect, solvable, nilpotent, abelian and unimodular Lie algebras. Furthermore we consider commutative post-Lie algebra structures on perfect Lie algebras. Using Lie algebra cohomology we can classify such structures in several cases. We also study commutative structures on low-dimensional Lie algebras and on nilpotent Lie algebras. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:226 / 245
页数:20
相关论文
共 50 条