Domain Generalization via Multidomain Discriminant Analysis

被引:0
|
作者
Hu, Shoubo [1 ]
Zhang, Kun [2 ]
Chen, Zhitang [3 ]
Chan, Laiwan [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Hong Kong, Peoples R China
[2] Carnegie Mellon Univ, Dept Philosophy, Pittsburgh, PA 15213 USA
[3] Huawei Noahs Ark Lab, Hong Kong, Peoples R China
来源
35TH UNCERTAINTY IN ARTIFICIAL INTELLIGENCE CONFERENCE (UAI 2019) | 2020年 / 115卷
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
INFERENCE; KERNEL;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Domain generalization (DG) aims to incorporate knowledge from multiple source domains into a single model that could generalize well on unseen target domains. This problem is ubiquitous in practice since the distributions of the target data may rarely be identical to those of the source data. In this paper, we propose Multidomain Discriminant Analysis (MDA) to address DG of classification tasks in general situations. MDA learns a domain-invariant feature transformation that aims to achieve appealing properties, including a minimal divergence among domains within each class, a maximal separability among classes, and overall maximal compactness of all classes. Furthermore, we provide the bounds on excess risk and generalization error by learning theory analysis. Comprehensive experiments on synthetic and real benchmark datasets demonstrate the effectiveness of MDA.
引用
收藏
页码:292 / 302
页数:11
相关论文
共 50 条
  • [41] Single Domain Generalization via Spontaneous Amplitude Spectrum Diversification
    Li, Yuexiang
    He, Nanjun
    Huang, Yawen
    RESOURCE-EFFICIENT MEDICAL IMAGE ANALYSIS, REMIA 2022, 2022, 13543 : 32 - 41
  • [42] OPEN-SET DOMAIN GENERALIZATION VIA METRIC LEARNING
    Katsumata, Kai
    Kishida, Ikki
    Amma, Ayako
    Nakayama, Hideki
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 459 - 463
  • [43] Federated learning via reweighting information bottleneck with domain generalization
    Li, Fangyu
    Chen, Xuqiang
    Han, Zhu
    Du, Yongping
    Han, Honggui
    INFORMATION SCIENCES, 2024, 677
  • [44] Compound Domain Generalization via Meta-Knowledge Encoding
    Chen, Chaoqi
    Li, Jiongcheng
    Han, Xiaoguang
    Liu, Xiaoqing
    Yu, Yizhou
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 7109 - 7119
  • [45] Domain Generalization for Named Entity Boundary Detection via Metalearning
    Li, Jing
    Shang, Shuo
    Chen, Lisi
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (09) : 3819 - 3830
  • [46] Domain generalization via geometric adaptation over augmented data
    Atghaei, Ali
    Rahmati, Mohammad
    KNOWLEDGE-BASED SYSTEMS, 2025, 309
  • [47] Domain Generalization Via Encoding and Resampling in a Unified Latent Space
    Liu, Yajing
    Xiong, Zhiwei
    Li, Ya
    Tian, Xinmei
    Zha, Zheng-Jun
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 126 - 139
  • [48] Domain Generalization via Aggregation and Separation for Audio Deepfake Detection
    Xie, Yuankun
    Cheng, Haonan
    Wang, Yutian
    Ye, Long
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 344 - 358
  • [49] Domain Generalization via Balancing Training Difficulty and Model Capability
    Jiang, Xueying
    Huang, Jiaxing
    Jin, Sheng
    Lu, Shijian
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 18947 - 18957
  • [50] Domain generalization via optimal transport with metric similarity learning
    Zhou, Fan
    Jiang, Zhuqing
    Shui, Changjian
    Wang, Boyu
    Chaib-draa, Brahim
    NEUROCOMPUTING, 2021, 456 : 469 - 480