Domain Generalization via Multidomain Discriminant Analysis

被引:0
|
作者
Hu, Shoubo [1 ]
Zhang, Kun [2 ]
Chen, Zhitang [3 ]
Chan, Laiwan [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Hong Kong, Peoples R China
[2] Carnegie Mellon Univ, Dept Philosophy, Pittsburgh, PA 15213 USA
[3] Huawei Noahs Ark Lab, Hong Kong, Peoples R China
来源
35TH UNCERTAINTY IN ARTIFICIAL INTELLIGENCE CONFERENCE (UAI 2019) | 2020年 / 115卷
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
INFERENCE; KERNEL;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Domain generalization (DG) aims to incorporate knowledge from multiple source domains into a single model that could generalize well on unseen target domains. This problem is ubiquitous in practice since the distributions of the target data may rarely be identical to those of the source data. In this paper, we propose Multidomain Discriminant Analysis (MDA) to address DG of classification tasks in general situations. MDA learns a domain-invariant feature transformation that aims to achieve appealing properties, including a minimal divergence among domains within each class, a maximal separability among classes, and overall maximal compactness of all classes. Furthermore, we provide the bounds on excess risk and generalization error by learning theory analysis. Comprehensive experiments on synthetic and real benchmark datasets demonstrate the effectiveness of MDA.
引用
收藏
页码:292 / 302
页数:11
相关论文
共 50 条
  • [21] LINEAR DISCRIMINANT ANALYSIS WITH A GENERALIZATION OF THE MOORE-PENROSE PSEUDOINVERSE
    Gorecki, Tomasz
    Luczak, Maciej
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2013, 23 (02) : 463 - 471
  • [22] Generalization of linear discriminant analysis using Lp-norm
    Oh, Jae Hyun
    Kwak, Nojun
    PATTERN RECOGNITION LETTERS, 2013, 34 (06) : 679 - 685
  • [23] A Causality-Aware Perspective on Domain Generalization via Domain Intervention
    Shao, Youjia
    Wang, Shaohui
    Zhao, Wencang
    ELECTRONICS, 2024, 13 (10)
  • [24] Domain generalization via Inter-domain Alignment and Intra-domain Expansion
    Hu, Jiajun
    Qi, Lei
    Zhang, Jian
    Shi, Yinghuan
    PATTERN RECOGNITION, 2024, 146
  • [25] Robust domain-adaptive discriminant analysis
    Kouw, Wouter M.
    Loog, Marco
    PATTERN RECOGNITION LETTERS, 2021, 148 : 107 - 113
  • [26] Probable Domain Generalization via Quantile Risk Minimization
    Eastwood, Cian
    Robey, Alexander
    Singh, Shashank
    von Kuegelgen, Julius
    Hassani, Hamed
    Pappas, George J.
    Schoelkopf, Bernhard
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [27] Domain Generalization via Adversarially Learned Novel Domains
    Zhe, Yu
    Fukuchi, Kazuto
    Akimoto, Youhei
    Sakuma, Jun
    IEEE ACCESS, 2022, 10 : 101855 - 101868
  • [28] Video Audio Domain Generalization via Confounder Disentanglement
    Zhang, Shengyu
    Feng, Xusheng
    Fan, Wenyan
    Fang, Wenjing
    Feng, Fuli
    Ji, Wei
    Li, Shuo
    Wang, Li
    Zhao, Shanshan
    Zhao, Zhou
    Chua, Tat-Seng
    Wu, Fei
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 12, 2023, : 15322 - 15330
  • [29] Single Domain Generalization via Unsupervised Diversity Probe
    Guo, Kehua
    Ding, Rui
    Qiu, Tian
    Zhu, Xiangyuan
    Wu, Zheng
    Wang, Liwei
    Fang, Hui
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 2101 - 2111
  • [30] Adaptive Domain Generalization Via Online Disagreement Minimization
    Zhang, Xin
    Chen, Ying-Cong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 4247 - 4258