Infinite families of congruences for k-regular overpartitions

被引:13
|
作者
Ray, Chiranjit [1 ]
Barman, Rupam [1 ]
机构
[1] Indian Inst Technol Guwahati, Dept Math, North Guwahati 781039, Assam, India
关键词
Partition; overpartition; regular overpartition; theta functions;
D O I
10.1142/S1793042118500021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (A) over bar (k) (n) be the number of overpartitions of n into parts not divisible by k. In this paper, we find infinite families of congruences modulo 4, 8 and 16 for (A) over bar (2k) (n) and (A) over bar (4k) (n) for any k >= 1. Along the way, we obtain several Ramanujan type congruences for (A) over bar (2k) (n) and (A) over bar (4k) (n) We also find infinite families of congruences modulo 6 for (A) over bar (9) (n).
引用
收藏
页码:19 / 29
页数:11
相关论文
共 50 条
  • [41] K-regular graphs and Hecke surfaces
    Brooks, R
    Monastyrsky, M
    Geometry, Spectral Theory, Groups, and Dynamics, 2005, 387 : 65 - 74
  • [42] THE MINIMAL GROWTH OF A k-REGULAR SEQUENCE
    Bell, Jason P.
    Coons, Michael
    Hare, Kevin G.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 90 (02) : 195 - 203
  • [43] EMBEDDING K-REGULAR GRAPHS IN K+1-REGULAR GRAPHS
    GARDINER, A
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1983, 28 (DEC): : 393 - 400
  • [44] The First k-Regular Subgraph is Large
    Gao, Pu
    COMBINATORICS PROBABILITY & COMPUTING, 2014, 23 (03): : 412 - 433
  • [45] On the Hamiltonicity of the k-Regular Graph Game
    Jeremy Meza
    Samuel Simon
    Graphs and Combinatorics, 2018, 34 : 1131 - 1145
  • [46] THE SPECTRAL GEOMETRY OF K-REGULAR GRAPHS
    BROOKS, R
    JOURNAL D ANALYSE MATHEMATIQUE, 1991, 57 : 120 - 151
  • [47] Maximum k-regular induced subgraphs
    Domingos M. Cardoso
    Marcin Kamiński
    Vadim Lozin
    Journal of Combinatorial Optimization, 2007, 14 : 455 - 463
  • [48] On the values attained by a k-regular sequence
    Bell, JP
    ADVANCES IN APPLIED MATHEMATICS, 2005, 34 (03) : 634 - 643
  • [49] k-regular factors and semi-k-regular factors in graphs
    Kotani, K
    DISCRETE MATHEMATICS, 1998, 186 (1-3) : 177 - 193
  • [50] New congruences for [j,k]-overpartitions with even parts distinct
    da Silva, Robson
    Gama, Marcelo C.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2025, 31 (01):