Infinite families of congruences for k-regular overpartitions

被引:13
|
作者
Ray, Chiranjit [1 ]
Barman, Rupam [1 ]
机构
[1] Indian Inst Technol Guwahati, Dept Math, North Guwahati 781039, Assam, India
关键词
Partition; overpartition; regular overpartition; theta functions;
D O I
10.1142/S1793042118500021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (A) over bar (k) (n) be the number of overpartitions of n into parts not divisible by k. In this paper, we find infinite families of congruences modulo 4, 8 and 16 for (A) over bar (2k) (n) and (A) over bar (4k) (n) for any k >= 1. Along the way, we obtain several Ramanujan type congruences for (A) over bar (2k) (n) and (A) over bar (4k) (n) We also find infinite families of congruences modulo 6 for (A) over bar (9) (n).
引用
收藏
页码:19 / 29
页数:11
相关论文
共 50 条
  • [31] K-REGULAR EMBEDDINGS OF PLANE
    COHEN, FR
    HANDEL, D
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 72 (01) : 201 - 204
  • [32] THE RING OF K-REGULAR SEQUENCES
    ALLOUCHE, JP
    SHALLIT, J
    LECTURE NOTES IN COMPUTER SCIENCE, 1990, 415 : 12 - 23
  • [33] Decidability and k-regular sequences
    Krenn, Daniel
    Shallit, Jeffrey
    THEORETICAL COMPUTER SCIENCE, 2022, 907 : 34 - 44
  • [34] Congruences for [j,k] - overpartitions with even parts distinct
    Naika, M. S. Mahadeva
    Harishkumar, T.
    Veeranayaka, T. N.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (02):
  • [35] Congruences for overpartitions with l-regular over-lined parts
    Shivanna, Gireesh Dapparthi
    Chandrappa, Shivashankar
    JOURNAL OF ANALYSIS, 2023, 31 (01): : 459 - 474
  • [36] Infinitely Many Congruences for k-Regular Partitions with Designated Summands (vol 14, pg 931, 2020)
    da Silva, Robson
    Sellers, James A.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2020, 51 (04): : 1083 - 1085
  • [37] Inequalities for the k-regular overpartition function
    Peng, Yi
    Zhang, Helen W. J.
    Zhong, Ying
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2025, 21 (04) : 809 - 835
  • [38] Independence and irredundance in k-regular graphs
    Fricke, GH
    Hedetniemi, ST
    Jacobs, DP
    ARS COMBINATORIA, 1998, 49 : 271 - 279
  • [39] Maximum k-regular induced subgraphs
    Cardoso, Domingos M.
    Kaminski, Marcin
    Lozin, Vadim
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2007, 14 (04) : 455 - 463
  • [40] On the Hamiltonicity of the k-Regular Graph Game
    Meza, Jeremy
    Simon, Samuel
    GRAPHS AND COMBINATORICS, 2018, 34 (06) : 1131 - 1145