Infinite families of congruences for k-regular overpartitions

被引:13
|
作者
Ray, Chiranjit [1 ]
Barman, Rupam [1 ]
机构
[1] Indian Inst Technol Guwahati, Dept Math, North Guwahati 781039, Assam, India
关键词
Partition; overpartition; regular overpartition; theta functions;
D O I
10.1142/S1793042118500021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (A) over bar (k) (n) be the number of overpartitions of n into parts not divisible by k. In this paper, we find infinite families of congruences modulo 4, 8 and 16 for (A) over bar (2k) (n) and (A) over bar (4k) (n) for any k >= 1. Along the way, we obtain several Ramanujan type congruences for (A) over bar (2k) (n) and (A) over bar (4k) (n) We also find infinite families of congruences modulo 6 for (A) over bar (9) (n).
引用
收藏
页码:19 / 29
页数:11
相关论文
共 50 条
  • [1] Infinite families of infinite families of congruences for k-regular partitions
    Carlson, Rowland
    Webb, John J.
    RAMANUJAN JOURNAL, 2014, 33 (03): : 329 - 337
  • [2] Infinite families of infinite families of congruences for k-regular partitions
    Rowland Carlson
    John J. Webb
    The Ramanujan Journal, 2014, 33 : 329 - 337
  • [3] New infinite families of congruences for Andrews' (K, I)-singular overpartitions
    Li, Xiaorong
    Yao, Olivia X. M.
    QUAESTIONES MATHEMATICAE, 2018, 41 (07) : 1005 - 1019
  • [4] INFINITE FAMILIES OF CONGRUENCES FOR OVERPARTITIONS WITH RESTRICTED ODD DIFFERENCES
    Lin, Bernard L. S.
    Liu, Jian
    Wang, Andrew Y. Z.
    Xia, Jiejuan
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 102 (01) : 59 - 66
  • [5] k-Regular partitions and overpartitions with bounded part differences
    Bernard L. S. Lin
    Saisai Zheng
    The Ramanujan Journal, 2021, 56 : 685 - 695
  • [6] k-Regular partitions and overpartitions with bounded part differences
    Lin, Bernard L. S.
    Zheng, Saisai
    RAMANUJAN JOURNAL, 2021, 56 (02): : 685 - 695
  • [7] CONGRUENCES FOR k-REGULAR PARTITIONS WITH DESIGNATED SUMMANDS
    Kaur, Mandeep
    Vandna
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2022, 53 (02): : 175 - 194
  • [8] Congruences for -regular overpartitions and Andrews' singular overpartitions
    Barman, Rupam
    Ray, Chiranjit
    RAMANUJAN JOURNAL, 2018, 45 (02): : 497 - 515
  • [9] Infinitely Many Congruences for k-Regular Partitions with Designated Summands
    da Silva, Robson
    Sellers, James A.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2020, 51 (02): : 357 - 370
  • [10] Congruences modulo 8 for (2, k)-regular overpartitions for odd k > 1
    Adiga, Chandrashekar
    Naika, M. S. Mahadeva
    Ranganatha, D.
    Shivashankar, C.
    ARABIAN JOURNAL OF MATHEMATICS, 2018, 7 (02) : 61 - 75