A proximal quadratic surface support vector machine for semi-supervised binary classification

被引:12
|
作者
Yan, Xin [1 ]
Bai, Yanqin [2 ]
Fang, Shu-Cherng [3 ]
Luo, Jian [4 ]
机构
[1] Shanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai 201620, Peoples R China
[2] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[3] North Carolina State Univ, Dept Ind & Syst Engn, Raleigh, NC 27695 USA
[4] Dongbei Univ Finance & Econ, Sch Management Sci & Engn, Dalian 116025, Peoples R China
基金
中国国家自然科学基金;
关键词
Semi-supervised classification; Proximal support vector machine; Kernel-free; Quadratic surface; Alternating direction method; ALTERNATING DIRECTION METHOD; OPTIMIZATION TECHNIQUES;
D O I
10.1007/s00500-017-2751-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Semi-supervised support vector machine is a popular method in the research area of machine learning. Considering a large amount of unlabeled data points in real-life world, the semi-supervised support machine has the ability of good generalization for dealing with nonlinear classification problems. In this paper, a proximal quadratic surface support vector machine model is proposed for semi-supervised binary classification. The main advantage of our new model is that the proximal quadratic surfaces are constructed directly for nonlinear classification instead of using the kernel function, which avoids the tasks of choosing kernels and tuning their parameters. We reformulate this proposed model as an unconstrained mixed-integer quadratic programming problem. Semi-definite relaxation is then adopted, and a primal alternating direction method is further proposed for fast computation. We test the proposed method on some artificial and public benchmark data sets. Preliminary results indicate that our method outperforms some well-known methods for semi-supervised classification in terms of the efficiency and classifying accuracy.
引用
收藏
页码:6905 / 6919
页数:15
相关论文
共 50 条
  • [21] An overview on semi-supervised support vector machine
    Ding, Shifei
    Zhu, Zhibin
    Zhang, Xiekai
    NEURAL COMPUTING & APPLICATIONS, 2017, 28 (05): : 969 - 978
  • [22] An overview on semi-supervised support vector machine
    Shifei Ding
    Zhibin Zhu
    Xiekai Zhang
    Neural Computing and Applications, 2017, 28 : 969 - 978
  • [23] Intuitionistic Fuzzy Laplacian Twin Support Vector Machine for Semi-supervised Classification
    Jia-Bin Zhou
    Yan-Qin Bai
    Yan-Ru Guo
    Hai-Xiang Lin
    Journal of the Operations Research Society of China, 2022, 10 : 89 - 112
  • [24] Manifold Energy Projection Twin Support Vector Machine for Semi-Supervised Classification
    Zhou, Jia-Nan
    Feng, Zhi-Lin
    IEEE ACCESS, 2025, 13 : 6704 - 6728
  • [25] A Novel Classification Algorithm Based on Incremental Semi-Supervised Support Vector Machine
    Gao, Fei
    Mei, Jingyuan
    Sun, Jinping
    Wang, Jun
    Yang, Erfu
    Hussain, Amir
    PLOS ONE, 2015, 10 (08):
  • [26] Laplacian Twin Support Vector Machine With Pinball Loss for Semi-Supervised Classification
    Damminsed, Vipavee
    Panup, Wanida
    Wangkeeree, Rabian
    IEEE ACCESS, 2023, 11 : 31399 - 31416
  • [27] Intuitionistic Fuzzy Laplacian Twin Support Vector Machine for Semi-supervised Classification
    Zhou, Jia-Bin
    Bai, Yan-Qin
    Guo, Yan-Ru
    Lin, Hai-Xiang
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2022, 10 (01) : 89 - 112
  • [28] Hessian scatter regularized twin support vector machine for semi-supervised classification
    Yu, Guolin
    Ma, Jun
    Xie, Chenzhen
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 119
  • [29] An Internet Traffic Classification Method Based on Semi-Supervised Support Vector Machine
    Li, Xiang
    Qi, Feng
    Xu, Dan
    Qiu, Xue-song
    2011 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2011,
  • [30] Laplacian least squares twin support vector machine for semi-supervised classification
    Chen, Wei-Jie
    Shao, Yuan-Hai
    Deng, Nai-Yang
    Feng, Zhi-Lin
    NEUROCOMPUTING, 2014, 145 : 465 - 476