Intuitionistic Fuzzy Laplacian Twin Support Vector Machine for Semi-supervised Classification

被引:0
|
作者
Jia-Bin Zhou
Yan-Qin Bai
Yan-Ru Guo
Hai-Xiang Lin
机构
[1] Shanghai University,Department of Mathematics
[2] Delft University of Technology,Delft Institute of Applied Mathematics
关键词
Twin support vector machine; Semi-supervised classification; Intuitionistic fuzzy; Manifold regularization; Noisy data; 68T99; 90C20;
D O I
暂无
中图分类号
学科分类号
摘要
In general, data contain noises which come from faulty instruments, flawed measurements or faulty communication. Learning with data in the context of classification or regression is inevitably affected by noises in the data. In order to remove or greatly reduce the impact of noises, we introduce the ideas of fuzzy membership functions and the Laplacian twin support vector machine (Lap-TSVM). A formulation of the linear intuitionistic fuzzy Laplacian twin support vector machine (IFLap-TSVM) is presented. Moreover, we extend the linear IFLap-TSVM to the nonlinear case by kernel function. The proposed IFLap-TSVM resolves the negative impact of noises and outliers by using fuzzy membership functions and is a more accurate reasonable classifier by using the geometric distribution information of labeled data and unlabeled data based on manifold regularization. Experiments with constructed artificial datasets, several UCI benchmark datasets and MNIST dataset show that the IFLap-TSVM has better classification accuracy than other state-of-the-art twin support vector machine (TSVM), intuitionistic fuzzy twin support vector machine (IFTSVM) and Lap-TSVM.
引用
收藏
页码:89 / 112
页数:23
相关论文
共 50 条
  • [1] Intuitionistic Fuzzy Laplacian Twin Support Vector Machine for Semi-supervised Classification
    Zhou, Jia-Bin
    Bai, Yan-Qin
    Guo, Yan-Ru
    Lin, Hai-Xiang
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2022, 10 (01) : 89 - 112
  • [2] Publisher Correction to: Intuitionistic Fuzzy Laplacian Twin Support Vector Machine for Semi-supervised Classification
    Jia-Bin Zhou
    Yan-Qin Bai
    Yan-Ru Guo
    Hai-Xiang Lin
    Journal of the Operations Research Society of China, 2023, 11 : 983 - 983
  • [3] Laplacian twin support vector machine for semi-supervised classification
    Qi, Zhiquan
    Tian, Yingjie
    Shi, Yong
    NEURAL NETWORKS, 2012, 35 : 46 - 53
  • [4] Laplacian smooth twin support vector machine for semi-supervised classification
    Wei-Jie Chen
    Yuan-Hai Shao
    Ning Hong
    International Journal of Machine Learning and Cybernetics, 2014, 5 : 459 - 468
  • [5] Laplacian smooth twin support vector machine for semi-supervised classification
    Chen, Wei-Jie
    Shao, Yuan-Hai
    Hong, Ning
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2014, 5 (03) : 459 - 468
  • [6] Safe intuitionistic fuzzy twin support vector machine for semi-supervised learning
    Bai, Lan
    Chen, Xu
    Wang, Zhen
    Shao, Yuan-Hai
    APPLIED SOFT COMPUTING, 2022, 123
  • [7] Laplacian Twin Support Vector Machine With Pinball Loss for Semi-Supervised Classification
    Damminsed, Vipavee
    Panup, Wanida
    Wangkeeree, Rabian
    IEEE ACCESS, 2023, 11 : 31399 - 31416
  • [8] Laplacian least squares twin support vector machine for semi-supervised classification
    Chen, Wei-Jie
    Shao, Yuan-Hai
    Deng, Nai-Yang
    Feng, Zhi-Lin
    NEUROCOMPUTING, 2014, 145 : 465 - 476
  • [9] Laplacian twin parametric-margin support vector machine for semi-supervised classification
    Yang, Zhiji
    Xu, Yitian
    NEUROCOMPUTING, 2016, 171 : 325 - 334
  • [10] Intuitionistic Fuzzy Laplacian Twin Support Vector Machine for Semi-supervised Classification (Jun, 10.1007/s40305-021-00354-9, 2021)
    Zhou, Jia-Bin
    Bai, Yan-Qin
    Guo, Yan-Ru
    Lin, Hai-Xiang
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2023, 11 (04) : 983 - 983