Invariant neural-network based face detection with Orthogonal Fourier-Mellin Moments

被引:0
|
作者
Terrillon, JC [1 ]
McReynolds, D [1 ]
Sadek, M [1 ]
Sheng, YL [1 ]
Akamatsu, S [1 ]
机构
[1] ATR, Human Informat Proc Res Labs, Kyoto 6190288, Japan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we apply a recently developed type of moments, Orthogonal Fourier-Mellin Moments (OFMMs) [7], to the specific problem of fully translation-, scale-, and inplane rotation-invariant detection of human faces in two-dimensional static color images, and we compare their performance with that of the generalized Hu's moments or non-orthogonal Fourier-Mellin moments (FMMs). As compared to the FMMs, the OFMMs have the advantages of non-redundancy of information, robustness with respect to noise and the ability to reconstruct the original object [7]. Color segmentation is first performed in nine different chrominance spaces by use of two human skin chrominance models as described in [10]. For feature extraction in the segmented images, the same number of OFMMs are used as for the FMMs as the input vector to a multilayer perceptron neural network (NN) to distinguish faces from distractors. It is shown that, at least in the specific problem of face detection from segmented images, for the same set of test images, there is no significant advantage over the FMMs in using the OFMMs, and that in practice both types of moments may be used. Possible explanations for such results are presented.
引用
收藏
页码:993 / 1000
页数:4
相关论文
共 50 条
  • [1] Invariant character recognition with Zernike and orthogonal Fourier-Mellin moments
    Kan, C
    Srinath, MD
    PATTERN RECOGNITION, 2002, 35 (01) : 143 - 154
  • [2] ORTHOGONAL FOURIER-MELLIN MOMENTS FOR INVARIANT PATTERN-RECOGNITION
    SHENG, YL
    SHEN, LX
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1994, 11 (06): : 1748 - 1757
  • [3] Recognition of digital annotation with invariant HONN based on orthogonal Fourier-Mellin moments
    Wang, JP
    Sun, Y
    Chen, Q
    2003 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-5, PROCEEDINGS, 2003, : 2261 - 2264
  • [4] Accurate Computation of Orthogonal Fourier-Mellin Moments
    Chandan Singh
    Rahul Upneja
    Journal of Mathematical Imaging and Vision, 2012, 44 : 411 - 431
  • [5] Accurate Computation of Orthogonal Fourier-Mellin Moments
    Singh, Chandan
    Upneja, Rahul
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2012, 44 (03) : 411 - 431
  • [6] FOURIER-MELLIN TRANSFORM AND THE INVARIANT IMAGE MOMENTS
    LI, YJ
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1991, 30 (07): : 1405 - 1406
  • [7] Subpixel edge location based on orthogonal Fourier-Mellin moments
    Bin, T. J.
    Lei, Ao
    Jiwen, Cui
    Wenjing, Kang
    Dandan, Liu
    IMAGE AND VISION COMPUTING, 2008, 26 (04) : 563 - 569
  • [8] Fractional Orthogonal Fourier-Mellin Moments for Pattern Recognition
    Zhang, Huaqing
    Li, Zongmin
    Liu, Yujie
    PATTERN RECOGNITION (CCPR 2016), PT I, 2016, 662 : 766 - 778
  • [9] Improvement and invariance analysis of Orthogonal Fourier-Mellin moments
    Bin, Y
    Jia-Xiong, P
    Qiu-Shi, R
    Wan-Rong, L
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2003, 17 (06) : 983 - 993
  • [10] Image Reconstruction from Orthogonal Fourier-Mellin Moments
    Wang, Xiaoyu
    Liao, Simon
    IMAGE ANALYSIS AND RECOGNITION, 2013, 7950 : 687 - 694