Convergency of the Monte Carlo algorithm for the solution of the Wigner quantum-transport equation

被引:14
|
作者
Nedjalkov, M
Dimov, I
Rossi, F
Jacoboni, C
机构
[1] UNIV MODENA,DIPARTIMENTO FIS,I-41100 MODENA,ITALY
[2] UNIV MODENA,IST NAZL FIS MAT,I-41100 MODENA,ITALY
关键词
integral equations; Wigner function; Neumann expansion; convergency; Monte Carlo method;
D O I
10.1016/0895-7177(96)00047-7
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Wigner function provides a convenient description for single-particle quantum transport in space dependent systems, such as modern nanoelectronic devices. A Monte Carlo algorithm has been recently introduced for the solution of this integro-differential equation. However, when the potential applied to the system has different limits at + and -infinity, a convergence problem arises for the kernel of the integral part of the equation. In this paper, we discuss the rigorous mathematical aspects of the convergency of the solution of the Wigner equation and of the Neumann expansion on which the Monte Carlo algorithm is based.
引用
收藏
页码:159 / 166
页数:8
相关论文
共 50 条
  • [31] Monte Carlo sampling of Wigner functions and surface hopping quantum dynamics
    Kube, Susanna
    Lasser, Caroline
    Weber, Marcus
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (06) : 1947 - 1962
  • [32] Quantum-transport simulations with the Wigner-function formalism: Failure of conventional boundary-condition schemes
    Taj, D.
    Genovese, L.
    Rossi, F.
    EUROPHYSICS LETTERS, 2006, 74 (06): : 1060 - 1066
  • [33] Quantum Transport Simulation of Silicon-Nanowire Transistors Based on Direct Solution Approach of the Wigner Transport Equation
    Yamada, Yoshihiro
    Tsuchiya, Hideaki
    Ogawa, Matsuto
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2009, 56 (07) : 1396 - 1401
  • [34] Worm algorithm in quantum Monte Carlo simulations
    Prokof'ev, N.V.
    Svistunov, B.V.
    Tupitsyn, I.S.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 238 (4-5): : 253 - 257
  • [35] QUANTUM CORRECTIONS TO THE MONTE-CARLO SOLUTION OF HOT-ELECTRON TRANSPORT IN SEMICONDUCTORS
    JAUHO, AP
    REGGIANI, L
    SOLID-STATE ELECTRONICS, 1988, 31 (3-4) : 535 - 538
  • [36] Quantum Algorithm for Exact Monte Carlo Sampling
    Destainville, Nicolas
    Georgeot, Bertrand
    Giraud, Olivier
    PHYSICAL REVIEW LETTERS, 2010, 104 (25)
  • [37] Worm algorithm in quantum Monte Carlo simulations
    Prokof'ev, NV
    Svistunov, BV
    Tupitsyn, IS
    PHYSICS LETTERS A, 1998, 238 (4-5) : 253 - 257
  • [38] Dissipative quantum transport in silicon nanowires based on Wigner transport equation
    Barraud, Sylvain
    JOURNAL OF APPLIED PHYSICS, 2011, 110 (09)
  • [39] Solving the Wigner equation with signed particle Monte Carlo for chemically relevant potentials
    Wang, Yu
    Simine, Lena
    JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (03):
  • [40] MONTE CARLO INTEGRATION OF ADJOINT NEUTRON TRANSPORT EQUATION
    ERIKSSON, B
    JOHANSSON, C
    LEIMDORFER, M
    KALDS, MH
    NUCLEAR SCIENCE AND ENGINEERING, 1969, 37 (03) : 410 - +