Convergency of the Monte Carlo algorithm for the solution of the Wigner quantum-transport equation

被引:14
|
作者
Nedjalkov, M
Dimov, I
Rossi, F
Jacoboni, C
机构
[1] UNIV MODENA,DIPARTIMENTO FIS,I-41100 MODENA,ITALY
[2] UNIV MODENA,IST NAZL FIS MAT,I-41100 MODENA,ITALY
关键词
integral equations; Wigner function; Neumann expansion; convergency; Monte Carlo method;
D O I
10.1016/0895-7177(96)00047-7
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Wigner function provides a convenient description for single-particle quantum transport in space dependent systems, such as modern nanoelectronic devices. A Monte Carlo algorithm has been recently introduced for the solution of this integro-differential equation. However, when the potential applied to the system has different limits at + and -infinity, a convergence problem arises for the kernel of the integral part of the equation. In this paper, we discuss the rigorous mathematical aspects of the convergency of the solution of the Wigner equation and of the Neumann expansion on which the Monte Carlo algorithm is based.
引用
收藏
页码:159 / 166
页数:8
相关论文
共 50 条
  • [21] Wigner-Boltzmann Monte Carlo approach to nanodevice simulation: from quantum to semiclassical transport
    Querlioz, Damien
    Huu-Nha Nguyen
    Saint-Martin, Jerome
    Bournel, Arnaud
    Galdin-Retailleau, Sylvie
    Dollfus, Philippe
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2009, 8 (3-4) : 324 - 335
  • [22] A Monte Carlo solution of transport equations
    Grigoriu, M
    PROBABILISTIC ENGINEERING MECHANICS, 1998, 13 (03) : 169 - 174
  • [23] An introduction to applied quantum mechanics in the Wigner Monte Carlo formalism
    Sellier, J. M.
    Nedjalkov, M.
    Dimov, I.
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2015, 577 : 1 - 34
  • [24] Diffusion quantum Monte Carlo studies of Wigner crystals.
    Needs, RJ
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 226 : U338 - U338
  • [25] A NEW MONTE-CARLO TECHNIQUE FOR THE SOLUTION OF THE BOLTZMANN TRANSPORT-EQUATION
    JACOBONI, C
    POLI, P
    ROTA, L
    SOLID-STATE ELECTRONICS, 1988, 31 (3-4) : 523 - 526
  • [26] A QUANTUM-TRANSPORT MODEL FOR SEMICONDUCTORS - THE WIGNER-POISSON PROBLEM ON A BOUNDED BRILLOUIN-ZONE
    DEGOND, P
    MARKOWICH, PA
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1990, 24 (06): : 697 - 709
  • [27] Multiworm algorithm quantum Monte Carlo
    Lingua, F.
    Capogrosso-Sansone, B.
    Safavi-Naini, A.
    Jahangiri, A. J.
    Penna, V
    PHYSICA SCRIPTA, 2018, 93 (10)
  • [28] Monte Carlo Methods for the Neutron Transport Equation
    Cox, Alexander M. G.
    Harris, Simon C.
    Kyprianou, Andreas E.
    Wang, Minmin
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2022, 10 (02): : 775 - 825
  • [29] MONTE-CARLO SOLUTION OF SCHRODINGERS EQUATION
    GRIMM, RC
    STORER, RG
    JOURNAL OF COMPUTATIONAL PHYSICS, 1971, 7 (01) : 134 - &
  • [30] Solution of the generalized transport equation with a peak-shaped indicatrix by the Monte Carlo method
    Antyufeev, VS
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 1996, 11 (02) : 113 - 137