Geometry of homogeneous polar foliations of complex hyperbolic spaces

被引:0
|
作者
Kubo, Akira [1 ]
机构
[1] Hiroshima Univ, Grad Sch Sci, Dept Math, Higashihiroshima 7398526, Japan
关键词
homogeneous submanifolds; complex hyperbolic spaces; polar actions; NONCOMPACT SYMMETRIC-SPACES; COHOMOGENEITY ONE ACTIONS;
D O I
10.32917/hmj/1428365055
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Homogeneous polar foliations of complex hyperbolic spaces have been classified by Berndt and Diaz-Ramos. In this paper, we study geometry of leaves of such foliations: the minimality, the parallelism of the mean curvature vectors, and the congruency of orbits. In particular, we classify minimal leaves.
引用
收藏
页码:109 / 123
页数:15
相关论文
共 50 条