Asymptotics of Wave Functions of the Stationary Schrodinger Equation in the Weyl Chamber

被引:6
|
作者
Dobrokhotov, S. Yu. [1 ,2 ]
Minenkov, D. S. [1 ]
Shlosman, S. B. [3 ,4 ,5 ]
机构
[1] Ishlinsky Inst Problems Mech, Moscow, Russia
[2] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi, Russia
[3] Skolkovo Inst Sci & Technol, Moscow, Russia
[4] Univ Toulon & Var, Aix Marseille Univ, CNRS, CPT, Marseille, France
[5] RAS, Kharkevich Inst Informat Transmiss Problems, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
stationary Schrodinger equation; boundary value problem; Weyl-chamber-type polyhedral angle; spectrum; quantization condition; Maslov canonical operator; Airy function;
D O I
10.1134/S0040577918110065
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study stationary solutions of the Schrodinger equation with a monotonic potential U in a polyhedral angle (Weyl chamber) with the Dirichlet boundary condition. The potential has the form U(x)=Sigma j=1(n) V(x(j)), x = (x(1),...,x(n)) is an element of R-n, with a monotonically increasing function V(y). We construct semiclassical asymptotic formulas for eigenvalues and eigenfunctions in the form of the Slater determinant composed of Airy functions with arguments depending nonlinearly on x(j). We propose a method for implementing the Maslov canonical operator in the form of the Airy function based on canonical transformations.
引用
收藏
页码:1626 / 1634
页数:9
相关论文
共 50 条