机构:
Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
Michigan State Univ, CMSE, E Lansing, MI 48824 USAUniv Groningen, Dept Math, Groningen, Netherlands
We study the problem of optimal observability and prove time asymptotic observability estimates for the Schrodinger equation with a potential in L-infinity(Omega), with Omega subset of R-d, using spectral theory. An elegant way to model the problem using a time asymptotic observability constant is presented. For certain small potentials, we demonstrate the existence of a nonzero asymptotic observability constant under given conditions and describe its explicit properties and optimal values. Moreover, we give a precise description of numerical models to analyze the properties of important examples of potentials wells, including that of the modified harmonic oscillator.
机构:
Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
UMCS, Inst Math, PL-20031 Lublin, PolandColumbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
Bal, Guillaume
Komorowski, Tomasz
论文数: 0引用数: 0
h-index: 0
机构:
IMPAN, PL-00956 Warsaw, PolandColumbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
Komorowski, Tomasz
Ryzhik, Lenya
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Math, Stanford, CA 94305 USAColumbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA