Parameter estimation for Pareto and K distributed clutter with noise

被引:49
|
作者
Bocquet, Stephen [1 ]
机构
[1] Def Sci & Technol Org, Joint & Operat Anal Div, Melbourne, Vic 3207, Australia
来源
IET RADAR SONAR AND NAVIGATION | 2015年 / 9卷 / 01期
关键词
MAXIMUM-LIKELIHOOD-ESTIMATION; ORDER;
D O I
10.1049/iet-rsn.2014.0148
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The form of the z log z estimator is derived for both Pareto and K distributed clutter plus noise. When noise is included, numerical zero finding is required to obtain the shape parameter from the estimator, but it still provides a robust and accurate method that is relatively quick to compute. It is compared with two other methods. The method of moments is the simplest and fastest to compute, but less accurate than other methods if the clutter shape parameter is small. A constrained maximum-likelihood (ML) estimator is constructed by maximising the log likelihood function in one dimension to find the shape parameter, while holding the mean power and clutter to noise ratio constant. This estimator is robust and accurate, but relatively slow because numerical integration is required to calculate the likelihood function, along with numerical optimisation to find the maximum. If the noise power is unknown, it can be obtained using the first two intensity moments in combination with either the constrained ML or z log z estimator. These combinations provide more robust and accurate estimates than the third intensity moment.
引用
收藏
页码:104 / 113
页数:10
相关论文
共 50 条
  • [41] Parameter estimation for the truncated pareto distribution
    Aban, IB
    Meerschaert, MM
    Panorska, AK
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (473) : 270 - 277
  • [42] Parameter estimation for a bivariate pareto distribution
    Jeevanand, ES
    Padamadan, V
    STATISTICAL PAPERS, 1996, 37 (02) : 153 - 164
  • [43] Uniformly Most Powerful CFAR Test for Pareto-Target Detection in Pareto Distributed Clutter
    Gali, John Bob
    Ray, Priyadip
    Das, Goutam
    2020 TWENTY SIXTH NATIONAL CONFERENCE ON COMMUNICATIONS (NCC 2020), 2020,
  • [44] Estimation of the shape parameter of a Pareto distribution
    Tripathi, Yogesh Mani
    Petropoulos, Constantinos
    Jha, Mayank
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (18) : 4459 - 4468
  • [45] RADAR DETECTION PREDICTION IN K-DISTRIBUTED SEA CLUTTER AND THERMAL NOISE.
    Watts, S.
    IEEE Transactions on Aerospace and Electronic Systems, 1987, AES-23 (01) : 40 - 45
  • [46] Bipercentile parameter estimators of bias reduction for generalised Pareto clutter model
    Yu, Han
    Shui, Peng-Lang
    Lu, Kai
    Zeng, Wei-Liang
    IET RADAR SONAR AND NAVIGATION, 2020, 14 (07): : 1105 - 1112
  • [47] Explicit bipercentile parameter estimation of compound-Gaussian clutter with inverse gamma distributed texture
    Shui, Peng-Lang
    Yu, Han
    Shi, Li-Xiang
    Yang, Chun-Jiao
    IET RADAR SONAR AND NAVIGATION, 2018, 12 (02): : 202 - 208
  • [48] An investigation of the generalised range-based detector in Pareto distributed clutter
    Weinberg G.V.
    Tran C.
    Weinberg, Graham V. (graham.weinberg@dst.defence.gov.au), 2018, Electromagnetics Academy (85) : 1 - 8
  • [49] Optimised binary integration with order statistic CFAR in Pareto distributed clutter
    Weinberg, G. V.
    Kyprianou, R.
    DIGITAL SIGNAL PROCESSING, 2015, 42 : 50 - 60
  • [50] Shape-Parameter-Dependent Coherent Radar Target Detection in K-distributed Clutter
    Shui, Peng-Lang
    Liu, Ming
    Xu, Shu-Wen
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2016, 52 (01) : 451 - 465