Parameter estimation for Pareto and K distributed clutter with noise

被引:49
|
作者
Bocquet, Stephen [1 ]
机构
[1] Def Sci & Technol Org, Joint & Operat Anal Div, Melbourne, Vic 3207, Australia
来源
IET RADAR SONAR AND NAVIGATION | 2015年 / 9卷 / 01期
关键词
MAXIMUM-LIKELIHOOD-ESTIMATION; ORDER;
D O I
10.1049/iet-rsn.2014.0148
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The form of the z log z estimator is derived for both Pareto and K distributed clutter plus noise. When noise is included, numerical zero finding is required to obtain the shape parameter from the estimator, but it still provides a robust and accurate method that is relatively quick to compute. It is compared with two other methods. The method of moments is the simplest and fastest to compute, but less accurate than other methods if the clutter shape parameter is small. A constrained maximum-likelihood (ML) estimator is constructed by maximising the log likelihood function in one dimension to find the shape parameter, while holding the mean power and clutter to noise ratio constant. This estimator is robust and accurate, but relatively slow because numerical integration is required to calculate the likelihood function, along with numerical optimisation to find the maximum. If the noise power is unknown, it can be obtained using the first two intensity moments in combination with either the constrained ML or z log z estimator. These combinations provide more robust and accurate estimates than the third intensity moment.
引用
收藏
页码:104 / 113
页数:10
相关论文
共 50 条
  • [11] Parameter Estimation for Sea Clutter Pareto Distribution Model Based on Variable Interval
    Fan, Yifei
    Chen, Duo
    Tao, Mingliang
    Su, Jia
    Wang, Ling
    REMOTE SENSING, 2022, 14 (10)
  • [12] ESTIMATION OF TEXTURE PARAMETERS IN K-DISTRIBUTED CLUTTER
    LOMBARDO, P
    OLIVER, CJ
    IEE PROCEEDINGS-RADAR SONAR AND NAVIGATION, 1994, 141 (04) : 196 - 204
  • [13] A Novel [z log(z)]-Based Closed Form Approach to Parameter Estimation of K-Distributed Clutter Plus Noise for Radar Detection
    Sahed, Mohamed
    Mezache, Amar
    Laroussi, Toufik
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2015, 51 (01) : 492 - 505
  • [14] Estimation of the shape parameter of a generalized pareto distribution based on a transformation to pareto distributed variables
    Van Zyl J.M.
    Journal of Statistical Theory and Practice, 2015, 9 (1) : 171 - 183
  • [15] Improvement in parameter estimation of Pareto type II clutter using artificial neural networks
    Alioua, C.
    Mezache, A.
    Soltani, F.
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (05)
  • [16] Parameter estimation of K-distributed sea clutter based on fuzzy inference and Gustafson-Kessel clustering
    Davari, Atefeh
    Marhaban, Mohammad Hamiruce
    Noor, Samsul Bahari Mohd
    Karimadini, Mohammad
    Karimoddini, Ali
    FUZZY SETS AND SYSTEMS, 2011, 163 (01) : 45 - 53
  • [17] Parameters estimation for Generalized K-Distributed clutter model
    Ren Shuang-qiao
    Liu Yong-xiang
    Li Xiang
    Zhuang Zhao-wen
    PROCEEDINGS OF 2006 CIE INTERNATIONAL CONFERENCE ON RADAR, VOLS 1 AND 2, 2006, : 90 - +
  • [18] Accurate approximation to the optimum parameter estimate for K-distributed clutter
    Jahangir, M
    Blacknell, D
    White, RG
    IEE PROCEEDINGS-RADAR SONAR AND NAVIGATION, 1996, 143 (06) : 383 - 390
  • [19] Shape Parameter Estimation of Radar K-distributed Sea Clutter Based on Support Vector Regression and Percentiles
    Xue J.
    Sun M.
    Pan M.
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2024, 46 (04): : 1399 - 1407
  • [20] Enhanced Particle Swarm Optimization Algorithm for Sea Clutter Parameter Estimation in Generalized Pareto Distribution
    Yang, Bin
    Li, Qing
    APPLIED SCIENCES-BASEL, 2023, 13 (16):