Parameter estimation for Pareto and K distributed clutter with noise

被引:49
|
作者
Bocquet, Stephen [1 ]
机构
[1] Def Sci & Technol Org, Joint & Operat Anal Div, Melbourne, Vic 3207, Australia
来源
IET RADAR SONAR AND NAVIGATION | 2015年 / 9卷 / 01期
关键词
MAXIMUM-LIKELIHOOD-ESTIMATION; ORDER;
D O I
10.1049/iet-rsn.2014.0148
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The form of the z log z estimator is derived for both Pareto and K distributed clutter plus noise. When noise is included, numerical zero finding is required to obtain the shape parameter from the estimator, but it still provides a robust and accurate method that is relatively quick to compute. It is compared with two other methods. The method of moments is the simplest and fastest to compute, but less accurate than other methods if the clutter shape parameter is small. A constrained maximum-likelihood (ML) estimator is constructed by maximising the log likelihood function in one dimension to find the shape parameter, while holding the mean power and clutter to noise ratio constant. This estimator is robust and accurate, but relatively slow because numerical integration is required to calculate the likelihood function, along with numerical optimisation to find the maximum. If the noise power is unknown, it can be obtained using the first two intensity moments in combination with either the constrained ML or z log z estimator. These combinations provide more robust and accurate estimates than the third intensity moment.
引用
收藏
页码:104 / 113
页数:10
相关论文
共 50 条
  • [1] EFFECT OF NOISE ON ORDER-PARAMETER ESTIMATION FOR K-DISTRIBUTED CLUTTER
    LOMBARDO, P
    OLIVER, CJ
    TOUGH, RJA
    IEE PROCEEDINGS-RADAR SONAR AND NAVIGATION, 1995, 142 (01) : 33 - 40
  • [2] Closed-form parameter estimators for Pareto distributed clutter with noise
    Bocquet, S.
    ELECTRONICS LETTERS, 2015, 51 (23) : 1924 - 1925
  • [3] Improved Shape Parameter Estimation in Pareto Distributed Clutter with Neural Networks
    Machado Fernandez, Jose Raul
    Bacallao Vidal, Jesus de la Concepcion
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2016, 4 (02): : 7 - 11
  • [4] Combined Bipercentile Parameter Estimation of Generalized Pareto Distributed Sea Clutter Model
    Yu Han
    Shui Penglang
    Shi Sainan
    Yang Chunjiao
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2019, 41 (12) : 2836 - 2843
  • [5] A New Parameter Estimation for K Distribution Clutter
    Zhu, Jun
    Ji, Ke-feng
    Su, Yi
    Shan, Kai-jing
    ICSP: 2008 9TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, VOLS 1-5, PROCEEDINGS, 2008, : 1103 - 1107
  • [6] Self-Learning Parameter Estimation of K-Distributed Clutter Using GRU Network
    Shi, Sainan
    Gao, Jijuan
    Cao, Ding
    Zhang, Yutao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [7] K-Clutter plus Noise Parameter Estimation Using Fractional Positive and Negative Moments
    Mezache, Amar
    Chalabi, Izzeddine
    Laroussi, Toufik
    Sahed, Mohamed
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2016, 52 (02) : 960 - 967
  • [8] Detection of distributed targets in Pareto clutter
    Nouar, Nabila
    Farrouki, Atef
    2017 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING - BOUMERDES (ICEE-B), 2017,
  • [9] CNN-LSTM Based Approach for Parameter Estimation of K-Clutter Plus Noise
    Kerbaa, Taha Hocine
    Mezache, Amar
    Gini, Fulvio
    Greco, Maria Sabrina
    2020 IEEE RADAR CONFERENCE (RADARCONF20), 2020,
  • [10] Parameter Estimation in Radar K-Clutter plus Noise Based on Otsu's Algorithm
    Kerbaa T.H.
    Mezache A.
    Oudira H.
    Ingenierie des Systemes d'Information, 2020, 25 (03): : 295 - 302