ASYMPTOTIC ANALYSIS FOR EXTREME EIGENVALUES OF PRINCIPAL MINORS OF RANDOM MATRICES

被引:3
|
作者
Cai, T. Tony [1 ]
Jiang, Tiefeng [2 ]
Li, Xiaoou [2 ]
机构
[1] Univ Penn, Wharton Sch, Dept Stat, Philadelphia, PA 19104 USA
[2] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
来源
ANNALS OF APPLIED PROBABILITY | 2021年 / 31卷 / 06期
关键词
Random matrix; extremal eigenvalues; maximum of random variables; minimum of random variables; RESTRICTED ISOMETRY PROPERTY; STATISTICAL-THEORY; ENERGY-LEVELS; LARGEST ENTRIES; DISTRIBUTIONS; RECOVERY; LIMIT; UNIVERSALITY; ENSEMBLES; COHERENCE;
D O I
10.1214/21-AAP1668
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a standard white Wishart matrix with parameters n and p. Motivated by applications in high-dimensional statistics and signal processing, we perform asymptotic analysis on the maxima and minima of the eigenvalues of all the m x m principal minors, under the asymptotic regime that n, p, m go to infinity. Asymptotic results concerning extreme eigenvalues of principal minors of real Wigner matrices are also obtained. In addition, we discuss an application of the theoretical results to the construction of compressed sensing matrices, which provides insights to compressed sensing in signal processing and high-dimensional linear regression in statistics.
引用
收藏
页码:2953 / 2990
页数:38
相关论文
共 50 条
  • [21] Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices
    Benaych-Georges, F.
    Guionnet, A.
    Maida, M.
    ELECTRONIC JOURNAL OF PROBABILITY, 2011, 16 : 1621 - 1662
  • [22] On Wilks' joint moment formulas for embedded principal minors of Wishart random matrices
    Genest, C.
    Ouimet, F.
    Richards, D.
    STAT, 2024, 13 (02):
  • [23] On the Gaussian product inequality conjecture for disjoint principal minors of Wishart random matrices
    Genest, Christian
    Ouimet, Frederic
    Richards, Donald
    ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29 : 1 - 26
  • [24] The smallest eigenvalues of random kernel matrices: Asymptotic results on the min kernel
    Huang, Lu-Jing
    Liao, Yin-Ting
    Chang, Lo-Bin
    Hwang, Chii-Ruey
    STATISTICS & PROBABILITY LETTERS, 2019, 148 : 23 - 29
  • [25] ASYMPTOTIC JOINT DISTRIBUTIONS OF CERTAIN FUNCTIONS OF THE EIGENVALUES OF 4 RANDOM MATRICES
    KRISHNAIAH, PR
    LEE, JC
    JOURNAL OF MULTIVARIATE ANALYSIS, 1979, 9 (02) : 248 - 258
  • [26] Fine asymptotic behavior for eigenvalues of random normal matrices: Ellipse case
    Lee, Seung-Yeop
    Riser, Roman
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (02)
  • [27] Principal component analysis, neural networks and eigenvalues of matrices
    陈弘
    陈天平
    ChineseScienceBulletin, 1996, (11) : 967 - 968
  • [28] On semimonotone matrices with nonnegative principal minors
    Chu, TH
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 367 : 147 - 154
  • [29] On the signs of the principal minors of Hermitian matrices
    Martinez-Rivera, Xavier
    Saejeam, Kamonchanok
    LINEAR & MULTILINEAR ALGEBRA, 2025, 73 (01): : 17 - 39
  • [30] Principal component analysis, neural networks and eigenvalues of matrices
    Chen, H
    Chen, TP
    CHINESE SCIENCE BULLETIN, 1996, 41 (11): : 967 - 968