The smallest eigenvalues of random kernel matrices: Asymptotic results on the min kernel

被引:0
|
作者
Huang, Lu-Jing [1 ]
Liao, Yin-Ting [2 ]
Chang, Lo-Bin [3 ]
Hwang, Chii-Ruey [4 ]
机构
[1] Fujian Normal Univ, Coll Math & Informat, Fuzhou, Fujian, Peoples R China
[2] Brown Univ, Div Appl Math, Providence, RI 02912 USA
[3] Ohio State Univ, Dept Stat, Columbus, OH 43210 USA
[4] Acad Sinica, Inst Math, Taipei, Taiwan
关键词
Kernel matrix; Min kernel; Smallest eigenvalues; Spacing; ERROR-BOUNDS;
D O I
10.1016/j.spl.2018.12.008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper investigates asymptotic properties of the smallest eigenvalue of the random kernel matrix M-n = [1/K(X-i, X-j)](ij=1)(n), where k(x, y) = min{x,y} is the min kernel function and X-1, X-2, ..., X-n are i.i.d. random variables in [0, 1]. We prove that under certain conditions, the smallest eigenvalue converges in L-1 to zero with the rate of convergence O(n(-3)). In addition, if the underlying distribution of X-i's has a bounded density, the distribution of the smallest eigenvalue scaled by n(3) converges to an exponential distribution. Published by Elsevier B.V.
引用
收藏
页码:23 / 29
页数:7
相关论文
共 50 条