The smallest eigenvalues of random kernel matrices: Asymptotic results on the min kernel

被引:0
|
作者
Huang, Lu-Jing [1 ]
Liao, Yin-Ting [2 ]
Chang, Lo-Bin [3 ]
Hwang, Chii-Ruey [4 ]
机构
[1] Fujian Normal Univ, Coll Math & Informat, Fuzhou, Fujian, Peoples R China
[2] Brown Univ, Div Appl Math, Providence, RI 02912 USA
[3] Ohio State Univ, Dept Stat, Columbus, OH 43210 USA
[4] Acad Sinica, Inst Math, Taipei, Taiwan
关键词
Kernel matrix; Min kernel; Smallest eigenvalues; Spacing; ERROR-BOUNDS;
D O I
10.1016/j.spl.2018.12.008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper investigates asymptotic properties of the smallest eigenvalue of the random kernel matrix M-n = [1/K(X-i, X-j)](ij=1)(n), where k(x, y) = min{x,y} is the min kernel function and X-1, X-2, ..., X-n are i.i.d. random variables in [0, 1]. We prove that under certain conditions, the smallest eigenvalue converges in L-1 to zero with the rate of convergence O(n(-3)). In addition, if the underlying distribution of X-i's has a bounded density, the distribution of the smallest eigenvalue scaled by n(3) converges to an exponential distribution. Published by Elsevier B.V.
引用
收藏
页码:23 / 29
页数:7
相关论文
共 50 条
  • [31] Fine asymptotic behavior for eigenvalues of random normal matrices: Ellipse case
    Lee, Seung-Yeop
    Riser, Roman
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (02)
  • [32] Preconditioning Kernel Matrices
    Cutajar, Kurt
    Osborne, Michael A.
    Cunningham, John P.
    Filippone, Maurizio
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [34] ASYMPTOTIC REPRESENTATION RESULTS FOR PRODUCTS OF RANDOM MATRICES
    HEYDE, CC
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1985, 19 (01) : 51 - 52
  • [35] CONCENTRATION OF KERNEL MATRICES WITH APPLICATION TO KERNEL SPECTRAL CLUSTERING
    Amini, Arash A.
    Razaee, Zahra S.
    ANNALS OF STATISTICS, 2021, 49 (01): : 531 - 556
  • [36] On the Random Conjugate Kernel and Neural Tangent Kernel
    Hu, Zhengmian
    Huang, Heng
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [37] ON THE EIGENVALUES OF RANDOM MATRICES
    DIACONIS, P
    SHAHSHAHANI, M
    JOURNAL OF APPLIED PROBABILITY, 1994, 31A : 49 - 62
  • [38] Approximation of kernel matrices by circulant matrices and its application in kernel selection methods
    Guohui Song
    Yuesheng Xu
    Frontiers of Mathematics in China, 2010, 5 : 123 - 160
  • [39] On the eigenvalues of random matrices
    Diaconis, P.
    Shahshahani, M.
    Journal of Applied Probability, 1994, 31//A
  • [40] Estimation of the eigenvalues and the smallest singular value of matrices
    Zou, Limin
    Jiang, Youyi
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (06) : 1203 - 1211