Comparability graphs of lattices

被引:1
|
作者
Farley, Jonathan David [1 ]
Schmidt, Stefan E. [2 ]
机构
[1] MIT, Dept Appl Math, Cambridge, MA 02139 USA
[2] Phys Sci Lab, Las Cruces, NM 88003 USA
关键词
D O I
10.1016/j.jpaa.2007.07.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A theorem of N. Terai and T. Hibi for finite distributive lattices and a theorem of Hibi for finite modular lattices (suggested by R.P. Stanley) are equivalent to the following: if a finite distributive or modular lattice of rank d contains a complemented rank 3 interval, then the lattice is (d + 1)-connected. In this paper, the following generalization is proved: Let L be a (finite or infinite) semimodular lattice of rank d that is not a chain (d is an element of N-0). Then the comparability graph of L is (d + 1)-connected if and only if L has no simplicial elements, where z is an element of L is simplicial if the elements comparable to z form a chain. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:832 / 839
页数:8
相关论文
共 50 条
  • [31] LATTICES OF CUTS IN GRAPHS
    HALIN, R
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1991, 61 : 217 - 230
  • [33] UNDIRECTED GRAPHS REALIZABLE AS GRAPHS OF MODULAR LATTICES
    ALVAREZ, LR
    CANADIAN JOURNAL OF MATHEMATICS, 1965, 17 (06): : 923 - &
  • [34] THE DIMENSION OF FINITE AND INFINITE COMPARABILITY-GRAPHS
    ARDITTI, JC
    JUNG, HA
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1980, 21 (FEB): : 31 - 38
  • [35] A Grobner basis characterization for chordal comparability graphs
    Ohsugi, Hidefumi
    Hibi, Takayuki
    EUROPEAN JOURNAL OF COMBINATORICS, 2017, 59 : 122 - 128
  • [36] KERNELS IN SOME ORIENTATIONS OF COMPARABILITY-GRAPHS
    CHAMPETIER, C
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1989, 47 (01) : 111 - 113
  • [37] A characterization of P4-comparability graphs
    de Figueiredo, Celina
    Hoang, Chinh T.
    Maffray, Frederic
    DISCRETE MATHEMATICS, 2006, 306 (19-20) : 2461 - 2472
  • [38] Clique transversal and clique independence on comparability graphs
    Balachandran, V
    Nagavamsi, P
    Rangan, CP
    INFORMATION PROCESSING LETTERS, 1996, 58 (04) : 181 - 184
  • [39] Vertex coloring of comparability +ke and -ke graphs
    Takenaga, Yasuhiko
    Higashide, Kenichi
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2006, 4271 : 102 - +
  • [40] Application of Comparability Graphs in Decomposition of Petri Nets
    Wisniewski, Remigiusz
    Karatkevich, Andrei
    Adamski, Marian
    Kur, Daniel
    2014 7TH INTERNATIONAL CONFERENCE ON HUMAN SYSTEM INTERACTIONS (HSI), 2014, : 216 - 220