Comparability graphs of lattices

被引:1
|
作者
Farley, Jonathan David [1 ]
Schmidt, Stefan E. [2 ]
机构
[1] MIT, Dept Appl Math, Cambridge, MA 02139 USA
[2] Phys Sci Lab, Las Cruces, NM 88003 USA
关键词
D O I
10.1016/j.jpaa.2007.07.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A theorem of N. Terai and T. Hibi for finite distributive lattices and a theorem of Hibi for finite modular lattices (suggested by R.P. Stanley) are equivalent to the following: if a finite distributive or modular lattice of rank d contains a complemented rank 3 interval, then the lattice is (d + 1)-connected. In this paper, the following generalization is proved: Let L be a (finite or infinite) semimodular lattice of rank d that is not a chain (d is an element of N-0). Then the comparability graph of L is (d + 1)-connected if and only if L has no simplicial elements, where z is an element of L is simplicial if the elements comparable to z form a chain. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:832 / 839
页数:8
相关论文
共 50 条
  • [21] Minimal comparability completions of arbitrary graphs
    Heggernes, Pinar
    Mancini, Federico
    Papadopoulos, Charis
    DISCRETE APPLIED MATHEMATICS, 2008, 156 (05) : 705 - 718
  • [22] P4-COMPARABILITY GRAPHS
    HOANG, CT
    REED, BA
    DISCRETE MATHEMATICS, 1989, 74 (1-2) : 173 - 200
  • [23] Distance-hereditary comparability graphs
    Di Stefano, Gabriele
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (18) : 2669 - 2680
  • [24] INVARIANTS OF FINITE COMPARABILITY-GRAPHS
    KELLY, D
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1986, 3 (02): : 155 - 158
  • [25] Dimension and Matchings in Comparability and Incomparability Graphs
    William T. Trotter
    Ruidong Wang
    Order, 2016, 33 : 101 - 119
  • [26] Dimension and Matchings in Comparability and Incomparability Graphs
    Trotter, William T.
    Wang, Ruidong
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2016, 33 (01): : 101 - 119
  • [27] ON SOURCES IN COMPARABILITY-GRAPHS, WITH APPLICATIONS
    OLARIU, S
    DISCRETE MATHEMATICS, 1992, 110 (1-3) : 289 - 292
  • [28] SEPARATION LATTICES OF GRAPHS
    POLAT, N
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1976, 28 (04): : 725 - 752
  • [29] Incomparability Graphs of Lattices
    Wasadikar, Meenakshi
    Survase, Pradnya
    MATHEMATICAL MODELLING AND SCIENTIFIC COMPUTATION, 2012, 283 : 78 - 85
  • [30] ON ISOMORPHISMS OF GRAPHS OF LATTICES
    JAKUBIK, J
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1985, 35 (02) : 188 - 200