On the complexity of generalized Q2R automaton

被引:3
|
作者
Goles, Eric [1 ]
Montalva-Medel, Marco [1 ]
Montealegre, Pedro [1 ]
Rios-Wilson, Martin [1 ,2 ,3 ]
机构
[1] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Santiago, Chile
[2] Univ Chile, Dept Ingn Matemat, FCFM, Santiago, Chile
[3] Univ Toulon & Var, Aix Marseille Univ, LIS, CNRS, Marseille, France
关键词
Q2R networks; Computational complexity; Limit cycles; P-complete;
D O I
10.1016/j.aam.2022.102355
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the dynamic and complexity of the generalized Q2R automaton. We show the existence of non-polynomial cycles as well as its capability to simulate with the synchronous update the classical version of the automaton updated under a block sequential update scheme. Furthermore, we show that the decision problem consisting in determine if a given node in the network changes its state is P-Hard. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] The linear complexity of the generalized self-shrinking generator on GF(q)
    Wang, Hui-Juan
    Wang, Jin-Ling
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2011, 39 (02): : 414 - 418
  • [32] Linear complexity of binary generalized cyclotomic sequences over GF(q)
    Wang, Qiuyan
    Jiang, Yupeng
    Lin, Dongdai
    JOURNAL OF COMPLEXITY, 2015, 31 (05) : 731 - 740
  • [33] The Linear Complexity of a New Class of Generalized Cyclotomic Sequence of Order q with Period 2pm
    Wang Yan
    Xue Gaina
    Li Shunbo
    Hui Feifei
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2019, 41 (09) : 2151 - 2155
  • [34] GENERALIZED q-DIFFERENCE EQUATION FOR THE GENERALIZED q-OPERATOR rΦs(Dq) AND ITS APPLICATIONS IN q-INTEGRALS
    Reshem, F. A.
    Saad, H. L.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2024, 14 (02): : 756 - 774
  • [35] On Ramanujan’s function k(q)=r(q)r2(q2)
    Shaun Cooper
    The Ramanujan Journal, 2009, 20 : 311 - 328
  • [36] Factorizations that involve Ramanujan's function k(q) = r(q)r 2(q 2)
    Cooper, Shaun
    Hirschhorn, Michael D.
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (12) : 2301 - 2308
  • [37] The Q-toothpick Cellular Automaton
    Edvardsson, Elisabet
    Mossberg, Eva
    JOURNAL OF CELLULAR AUTOMATA, 2019, 14 (1-2) : 51 - 68
  • [38] TIME AND TAPE COMPLEXITY OF PUSHDOWN AUTOMATON LANGUAGES
    AHO, AV
    HOPCROFT, JE
    ULLMAN, JD
    INFORMATION AND CONTROL, 1968, 13 (03): : 186 - &
  • [39] The Complexity of Mean-Payoff Automaton Expression
    Velner, Yaron
    AUTOMATA, LANGUAGES, AND PROGRAMMING, ICALP 2012, PT II, 2012, 7392 : 390 - 402
  • [40] COMPLEXITY OF AUTOMATON IDENTIFICATION FROM GIVEN DATA
    GOLD, EM
    INFORMATION AND CONTROL, 1978, 37 (03): : 302 - 320