On the complexity of generalized Q2R automaton

被引:3
|
作者
Goles, Eric [1 ]
Montalva-Medel, Marco [1 ]
Montealegre, Pedro [1 ]
Rios-Wilson, Martin [1 ,2 ,3 ]
机构
[1] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Santiago, Chile
[2] Univ Chile, Dept Ingn Matemat, FCFM, Santiago, Chile
[3] Univ Toulon & Var, Aix Marseille Univ, LIS, CNRS, Marseille, France
关键词
Q2R networks; Computational complexity; Limit cycles; P-complete;
D O I
10.1016/j.aam.2022.102355
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the dynamic and complexity of the generalized Q2R automaton. We show the existence of non-polynomial cycles as well as its capability to simulate with the synchronous update the classical version of the automaton updated under a block sequential update scheme. Furthermore, we show that the decision problem consisting in determine if a given node in the network changes its state is P-Hard. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] On the complexity of the word problem for automaton semigroups and automaton groups
    D'Angeli, Daniele
    Rodaro, Emanuele
    Waechter, Jan Philipp
    ADVANCES IN APPLIED MATHEMATICS, 2017, 90 : 160 - 187
  • [22] The circular division of the factor group (Q2r x Cr, Z)/(P)over-bar(Qr x Cr) when r is an odd number
    Jabir, Naba Hasoon
    Abass, Rajaa Hassan
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2021, 24 (06): : 1625 - 1636
  • [23] EVALUATING THE COMPLEXITY OF A FINITE AUTOMATON
    PALAGIN, AV
    CYBERNETICS, 1984, 20 (04): : 515 - 519
  • [24] A generalized complexity measure based on Rényi entropy
    Pablo Sánchez-Moreno
    Juan Carlos Angulo
    Jesus S. Dehesa
    The European Physical Journal D, 2014, 68
  • [25] On Ramanujan's function k(q)=r(q)r 2(q 2)
    Cooper, Shaun
    RAMANUJAN JOURNAL, 2009, 20 (03): : 311 - 328
  • [26] Q-learning automaton
    Qian, F
    Hirata, H
    IEEE/WIC INTERNATIONAL CONFERENCE ON INTELLIGENT AGENT TECHNOLOGY, PROCEEDINGS, 2003, : 432 - 437
  • [27] EVALUATING THE COMPLEXITY OF A FINITE AUTOMATON.
    Palagin, A.V.
    1600, (20):
  • [28] Complexity of a counting finite state automaton
    Rich, C.A.
    Slutzki, G.
    Acta Cybernetica, 1990, 9 (04): : 403 - 417
  • [29] Incomplete Generalized (p, q, r)-Tribonacci Polynomials
    Shattuck, Mark
    Tan, Elif
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2018, 13 (01): : 1 - 18
  • [30] On q-generalized (r, s)-Stirling numbers
    Komatsu, Takao
    AEQUATIONES MATHEMATICAE, 2024, 98 (05) : 1281 - 1304