The eccentric connectivity index of one pentagonal carbon nanocones

被引:0
|
作者
Saheli, M. [1 ]
Saati, H. [1 ]
Ashrafi, A. R. [1 ]
机构
[1] Univ Kashan, Inst Nanosci & Nanotechnol, Kashan 8731751167, Iran
关键词
One pentagonal carbon nanocone; PI index; Edge Szeged index; WIENER INDEX; SZEGED-INDEXES; PI;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Let G be a graph. The eccentric connectivity index xi(G) is defined as xi(G) = Sigma(u is an element of V(G))deg(u)epsilon(u) where deg(u) denotes the degree of vertex u and epsilon(u) is the largest distance between u and any other vertex v of G. In this paper, exact formulas for the eccentric connectivity index of one pentagonal carbon nanocones are given.
引用
收藏
页码:896 / 897
页数:2
相关论文
共 50 条
  • [31] The Edge Eccentric Connectivity Index of Dendrimers
    Odabas, Zeynep Nihan
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2013, 10 (04) : 783 - 784
  • [32] Eccentric connectivity index of composite graphs
    Doslic, Tomislav
    Saheli, Mahboubeh
    UTILITAS MATHEMATICA, 2014, 95 : 3 - 22
  • [33] Distance Eccentric Connectivity Index of Graphs
    Alqesmah, Akram
    Saleh, Anwar
    Rangarajan, R.
    Gunes, Aysun Yurttas
    Cangul, Ismail Naci
    KYUNGPOOK MATHEMATICAL JOURNAL, 2021, 61 (01): : 61 - 74
  • [34] Eccentric Connectivity Index of Chemical Trees
    Haoer, R. S.
    Atan, K. A.
    Khalaf, A. M.
    Said, M. R. Md.
    Hasni, R.
    INNOVATIONS THROUGH MATHEMATICAL AND STATISTICAL RESEARCH: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND STATISTICS (ICMSS2016), 2016, 1739
  • [35] The Modified Eccentric Connectivity Index of Nanocomposites
    Odabas, Zeynep Nihan
    Berberler, Murat Ersen
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2015, 12 (09) : 2208 - 2212
  • [36] Edge eccentric connectivity index of nanothorns
    Berberler, Z. N.
    Berberler, M. E.
    BULGARIAN CHEMICAL COMMUNICATIONS, 2016, 48 (01): : 165 - 170
  • [37] On the extremal eccentric connectivity index of graphs
    Wu, Yueyu
    Chen, Yaojun
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 331 : 61 - 68
  • [38] Bounds on the General Eccentric Connectivity Index
    Yu, Xinhong
    Imran, Muhammad
    Javed, Aisha
    Jamil, Muhammad Kamran
    Zuo, Xuewu
    SYMMETRY-BASEL, 2022, 14 (12):
  • [39] On the eccentric connectivity index of uniform hypergraphs
    Weng, Weiming
    Zhou, Bo
    DISCRETE APPLIED MATHEMATICS, 2022, 309 : 180 - 193
  • [40] Extremal trees of the eccentric connectivity index
    Wang, Hua
    ARS COMBINATORIA, 2015, 122 : 55 - 64