Distance Eccentric Connectivity Index of Graphs

被引:2
|
作者
Alqesmah, Akram [1 ]
Saleh, Anwar [2 ]
Rangarajan, R. [1 ]
Gunes, Aysun Yurttas [3 ]
Cangul, Ismail Naci [3 ]
机构
[1] Univ Mysore, Dept Studies Math, Mysore 570006, Karnataka, India
[2] Univ Jeddah, Fac Sci, Dept Math, Jeddah, Saudi Arabia
[3] Bursa Uludag Univ, Math, TR-16059 Bursa, Turkey
来源
KYUNGPOOK MATHEMATICAL JOURNAL | 2021年 / 61卷 / 01期
关键词
eccentric connectivity index; distance eccentric connectivity index; topological graph index; graph operation; TOPOLOGICAL DESCRIPTOR;
D O I
10.5666/KMJ.2021.61.1.61
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V, E) be a connected graph. The eccentric connectivity index of G is defined by xi(C) (G) = Sigma(u)(is an element of V)((G)) deg(u)e(u), where deg(u) and e(u) denote the degree and eccentricity of the vertex u in G, respectively. In this paper, we introduce a new formulation of xi(C) that will be called the distance eccentric connectivity index of G and defined by xi(De)(G) = Sigma(u is an element of V(G))deg(De)(u)e(u) where deg(De)(u) denotes the distance eccentricity degree of the vertex u in G. The aim of this paper is to introduce and study this new topological index. The values of the eccentric connectivity index is calculated for some fundamental graph classes and also for some graph operations. Some inequalities giving upper and lower bounds for this index are obtained.
引用
收藏
页码:61 / 74
页数:14
相关论文
共 50 条
  • [1] On the Difference Between the Eccentric Connectivity Index and Eccentric Distance Sum of Graphs
    Alizadeh, Yaser
    Klavzar, Sandi
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (02) : 1123 - 1134
  • [2] On the Difference Between the Eccentric Connectivity Index and Eccentric Distance Sum of Graphs
    Yaser Alizadeh
    Sandi Klavžar
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 1123 - 1134
  • [3] On the quotients between the eccentric connectivity index and the eccentric distance sum of graphs with diameter 2
    Hua, Hongbo
    DISCRETE APPLIED MATHEMATICS, 2020, 285 : 297 - 300
  • [4] On the Eccentric Connectivity Index of Unicyclic Graphs
    Nacaroglu, Yasar
    Maden, Ayse Dilek
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2018, 9 (01): : 47 - 56
  • [5] AMPLIFIED ECCENTRIC CONNECTIVITY INDEX OF GRAPHS
    Mathad, V.
    Sujatha, H. N.
    Puneeth, S.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2022, 12 (04): : 1469 - 1479
  • [6] Eccentric connectivity index of composite graphs
    Doslic, Tomislav
    Saheli, Mahboubeh
    UTILITAS MATHEMATICA, 2014, 95 : 3 - 22
  • [7] On the extremal eccentric connectivity index of graphs
    Wu, Yueyu
    Chen, Yaojun
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 331 : 61 - 68
  • [8] Eccentric connectivity index of bridge graphs
    Mogharrab, M.
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2010, 4 (11): : 1866 - 1867
  • [9] EXTREMAL REGULAR GRAPHS FOR THE ECCENTRIC CONNECTIVITY INDEX
    Morgan, M. J.
    Mukwembi, S.
    Swart, H. C.
    QUAESTIONES MATHEMATICAE, 2014, 37 (03) : 435 - 444
  • [10] Extremal graphs of given parameters with respect to the eccentricity distance sum and the eccentric connectivity index
    Zhang, Huihui
    Li, Shuchao
    Xu, Baogen
    DISCRETE APPLIED MATHEMATICS, 2019, 254 : 204 - 221