Distance Eccentric Connectivity Index of Graphs

被引:2
|
作者
Alqesmah, Akram [1 ]
Saleh, Anwar [2 ]
Rangarajan, R. [1 ]
Gunes, Aysun Yurttas [3 ]
Cangul, Ismail Naci [3 ]
机构
[1] Univ Mysore, Dept Studies Math, Mysore 570006, Karnataka, India
[2] Univ Jeddah, Fac Sci, Dept Math, Jeddah, Saudi Arabia
[3] Bursa Uludag Univ, Math, TR-16059 Bursa, Turkey
来源
KYUNGPOOK MATHEMATICAL JOURNAL | 2021年 / 61卷 / 01期
关键词
eccentric connectivity index; distance eccentric connectivity index; topological graph index; graph operation; TOPOLOGICAL DESCRIPTOR;
D O I
10.5666/KMJ.2021.61.1.61
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V, E) be a connected graph. The eccentric connectivity index of G is defined by xi(C) (G) = Sigma(u)(is an element of V)((G)) deg(u)e(u), where deg(u) and e(u) denote the degree and eccentricity of the vertex u in G, respectively. In this paper, we introduce a new formulation of xi(C) that will be called the distance eccentric connectivity index of G and defined by xi(De)(G) = Sigma(u is an element of V(G))deg(De)(u)e(u) where deg(De)(u) denotes the distance eccentricity degree of the vertex u in G. The aim of this paper is to introduce and study this new topological index. The values of the eccentric connectivity index is calculated for some fundamental graph classes and also for some graph operations. Some inequalities giving upper and lower bounds for this index are obtained.
引用
收藏
页码:61 / 74
页数:14
相关论文
共 50 条
  • [21] ECCENTRIC CONNECTIVITY INDEX AND ECCENTRIC DISTANCE SUM OF VICSEK FRACTAL
    Xiao, Yunfeng
    Peng, Junhao
    Gao, Long
    Yuan, Zhenhua
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024,
  • [22] The difference between the eccentric distance sum and eccentric connectivity index
    Hua, Hongbo
    Wang, Hongzhuan
    Wang, Maolin
    ARS COMBINATORIA, 2019, 144 : 3 - 12
  • [23] On the Adjacent Eccentric Distance Sum Index of Graphs
    Qu, Hui
    Cao, Shujuan
    PLOS ONE, 2015, 10 (06):
  • [24] ECCENTRIC CONNECTIVITY INDEX AND ECCENTRIC DISTANCE SUM OF SOME GRAPH OPERATIONS
    Eskender, B.
    Vumar, E.
    TRANSACTIONS ON COMBINATORICS, 2013, 2 (01) : 103 - 111
  • [25] General eccentric connectivity index of trees and unicyclic graphs
    Vetrik, Tomas
    Masre, Mesfin
    DISCRETE APPLIED MATHEMATICS, 2020, 284 (301-315) : 301 - 315
  • [26] ECCENTRIC CONNECTIVITY INDEX OF UNICYCLIC GRAPHS WITH APPLICATION TO CYCLOALKANES
    Haoer, R. S.
    Atan, K. A.
    Khalaf, A. M.
    Hasni, R.
    2015 INTERNATIONAL CONFERENCE ON RESEARCH AND EDUCATION IN MATHEMATICS (ICREM7), 2015, : 211 - 214
  • [27] Some Properties of the Leap Eccentric Connectivity Index of Graphs
    Song, Ling
    Liu, Hechao
    Tang, Zikai
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2020, 11 (04): : 227 - 237
  • [28] Leap eccentric connectivity index in graphs with universal vertices
    Ghalavand, Ali
    Klavzar, Sandi
    Tavakoli, Mostafa
    Hakimi-Nezhaad, Mardjan
    Rahbarnia, Freydoon
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 436
  • [29] Maximum eccentric connectivity index for graphs with given diameter
    Hauweele, Pierre
    Hertz, Alain
    Melot, Hadrien
    Ries, Bernard
    Devillez, Gauvain
    DISCRETE APPLIED MATHEMATICS, 2019, 268 : 102 - 111
  • [30] A note on the eccentric connectivity index of graphs of given diameter
    du Toit, Lindie
    Mukwembi, Simon
    Vetrik, Tomas
    UTILITAS MATHEMATICA, 2020, 115 : 267 - 274