Analytical and numerical solutions of the density dependent Nagumo telegraph equation

被引:10
|
作者
Van Gorder, Robert A. [1 ]
Vajravelu, K. [1 ]
机构
[1] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
关键词
Analytical solution; Numerical solution; Runge-Kutta-Fehlberg; 45; method; Nagumo telegraph equation; DIFFUSION-EQUATIONS; SYSTEMS;
D O I
10.1016/j.nonrwa.2010.02.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we obtained analytical and numerical solutions to a class of density dependent diffusion equations with memory-delay effect. This is a generalization of the density dependent diffusion Nagumo equation we studied recently [RA. Van Corder, K. Vajravelu, Physics Letters A 372 (2008) 5152]. Furthermore, we obtained series solutions for various strengths of the density dependence along with bounds on the range of the convergence. The numerical solutions are obtained by the Runge-Kutta-Fehlberg 45 method. The dependence of the traveling wave solutions on various parameters, particularly the memory-delay term, is discussed. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3923 / 3929
页数:7
相关论文
共 50 条
  • [31] Numerical solutions of FitzHugh–Nagumo equation by exact finite-difference and NSFD schemes
    Mehran Namjoo
    Sadegh Zibaei
    Computational and Applied Mathematics, 2018, 37 : 1395 - 1411
  • [32] Numerical Validation of Analytical Solutions for the Kairat Evolution Equation
    Khater, Mostafa M. A.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2024, 63 (10)
  • [33] Analytical and numerical solutions of the Van Der Pol Equation
    J. Stefan Inst, Ljubljana, Slovenia
    Elektroteh Vestn Electrotech Rev, 4-5 (225-233):
  • [34] Singular solutions of the BBM equation: analytical and numerical study
    Gavrilyuk, Sergey
    Shyue, Keh-Ming
    NONLINEARITY, 2022, 35 (01) : 388 - 410
  • [35] Analytical and numerical solutions of the Schrodinger-KdV equation
    Labidi, Manel
    Ebadi, Ghodrat
    Zerrad, Essaid
    Biswas, Anjan
    PRAMANA-JOURNAL OF PHYSICS, 2012, 78 (01): : 59 - 90
  • [36] On the analytical and numerical solutions of the Benjamin–Bona–Mahony equation
    Asif Yokus
    Tukur Abdulkadir Sulaiman
    Hasan Bulut
    Optical and Quantum Electronics, 2018, 50
  • [37] Analytical and numerical solutions of the Schrödinger–KdV equation
    MANEL LABIDI
    GHODRAT EBADI
    ESSAID ZERRAD
    ANJAN BISWAS
    Pramana, 2012, 78 : 59 - 90
  • [38] Random telegraph signals with time dependent capture and emission probabilities: Analytical and numerical results
    da Silva, Roberto
    Wirth, Gilson I.
    APPLIED MATHEMATICAL MODELLING, 2010, 34 (04) : 968 - 977
  • [39] BOUNDED PROGRESSIVE WAVE SOLUTIONS OF NAGUMO EQUATION
    CONLEY, CC
    SIAM REVIEW, 1973, 15 (01) : 249 - &
  • [40] Five semi analytical and numerical simulations for the fractional nonlinear space-time telegraph equation
    Mostafa M. A. Khater
    Choonkil Park
    Jung Rye Lee
    Mohamed S. Mohamed
    Raghda A. M. Attia
    Advances in Difference Equations, 2021