Analytical and numerical solutions of the density dependent Nagumo telegraph equation

被引:10
|
作者
Van Gorder, Robert A. [1 ]
Vajravelu, K. [1 ]
机构
[1] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
关键词
Analytical solution; Numerical solution; Runge-Kutta-Fehlberg; 45; method; Nagumo telegraph equation; DIFFUSION-EQUATIONS; SYSTEMS;
D O I
10.1016/j.nonrwa.2010.02.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we obtained analytical and numerical solutions to a class of density dependent diffusion equations with memory-delay effect. This is a generalization of the density dependent diffusion Nagumo equation we studied recently [RA. Van Corder, K. Vajravelu, Physics Letters A 372 (2008) 5152]. Furthermore, we obtained series solutions for various strengths of the density dependence along with bounds on the range of the convergence. The numerical solutions are obtained by the Runge-Kutta-Fehlberg 45 method. The dependence of the traveling wave solutions on various parameters, particularly the memory-delay term, is discussed. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3923 / 3929
页数:7
相关论文
共 50 条
  • [21] The Periodic Solutions of Discrete Nagumo Equation
    刘玉荣
    刘曾荣
    Journal of Shanghai University, 2002, (02) : 97 - 100
  • [22] Travelling Waves for a Density Dependent Diffusion Nagumo Equation over the Real Line
    Robert A. Van Gorder
    CommunicationsinTheoreticalPhysics, 2012, 58 (07) : 5 - 11
  • [23] On soliton solutions for the Fitzhugh-Nagumo equation with time-dependent coefficients
    Triki, Houria
    Wazwaz, Abdul-Majid
    APPLIED MATHEMATICAL MODELLING, 2013, 37 (06) : 3821 - 3828
  • [24] Reductions and new exact solutions of the density-dependent Nagumo and Fisher equations
    Masemola, P.
    Kara, A. H.
    Fakhar, K.
    JOURNAL OF ENGINEERING MATHEMATICS, 2013, 82 (01) : 77 - 83
  • [25] Reductions and new exact solutions of the density-dependent Nagumo and Fisher equations
    P. Masemola
    A. H. Kara
    K. Fakhar
    Journal of Engineering Mathematics, 2013, 82 : 77 - 83
  • [26] Wavefront solutions of a nonlinear telegraph equation
    Gilding, B. H.
    Kersner, R.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (02) : 599 - 636
  • [27] GEOMETRIC CLASSIFICATION OF ANALYTICAL SOLUTIONS OF FITZHUGH-NAGUMO EQUATION AND ITS GENERALIZATION AS THE REACTION-DIFFUSION EQUATION
    Hasan-Zadeh, Atefeh
    ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2021, 24 (02): : 167 - 174
  • [28] On construction pulsating solutions of the telegraph equation
    Simonenko, II
    DAYS ON DIFFRACTION 2004, PROCEEDINGS, 2004, : 197 - 200
  • [29] Analytical, semi-analytical, and numerical solutions for the Cahn–Allen equation
    Mostafa M. A. Khater
    Choonkil Park
    Dianchen Lu
    Raghda A. M. Attia
    Advances in Difference Equations, 2020
  • [30] NEW SOLUTIONS OF HYPERBOLIC TELEGRAPH EQUATION
    Inc, Mustafa
    Partohaghighi, Mohammad
    Akinlar, Mehmet Ali
    Weber, Gerhard-Wilhelm
    JOURNAL OF DYNAMICS AND GAMES, 2021, 8 (02): : 129 - 138