The analysis and design of practical control systems requires that stochastic models be employed. Analysis and design tools have been developed, for example, for Markovian jump linear continuous and discrete-time systems, piecewise deterministic processes (PDP's), and general stochastic hybrid systems (GSHS's). These model classes have been used in many applications, including fault tolerant control and networked control systems. This paper presents initial results on the analysis of a sampled-data PDP representation of a nonlinear sampled-data system with a jump linear controller. In particular, it is shown that the state of the sampled-data PDP satisfies the strong Markov property. In addition, a relation between the invariant measures of a sampled-data system driven by a stochastic process and its associated discrete-time representation are presented. As an application, when the plant is linear with no external input, a sufficient testable condition for the convergence in distribution to the invariant delta Dirac measure is given.