Kinetic Statistics of Scalar Conservation Laws with Piecewise-Deterministic Markov Process Data

被引:2
|
作者
Kaspar, David C. [1 ]
Rezakhanlou, Fraydoun [2 ]
机构
[1] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
BURGERS-EQUATION; SHOCKS;
D O I
10.1007/s00205-020-01508-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 2010 Menon and Srinivasan published a conjecture for the statistical structure of solutions rho to scalar conservation laws with certain Markov initial conditions, proposing a kinetic equation that should suffice to describe rho(x, t) as a stochastic process in x with t fixed, or as a stochastic process in t with x fixed. In this article we largely resolve this conjecture.
引用
收藏
页码:259 / 298
页数:40
相关论文
共 50 条
  • [1] Kinetic Statistics of Scalar Conservation Laws with Piecewise-Deterministic Markov Process Data
    David C. Kaspar
    Fraydoun Rezakhanlou
    Archive for Rational Mechanics and Analysis, 2020, 237 : 259 - 298
  • [2] Piecewise-deterministic Markov processes
    Kazak, Jolanta
    ANNALES POLONICI MATHEMATICI, 2013, 109 (03) : 279 - 296
  • [3] NUMERICAL METHODS FOR THE EXIT TIME OF A PIECEWISE-DETERMINISTIC MARKOV PROCESS
    Brandejsky, Adrien
    De Saporta, Benoite
    Dufour, Francois
    ADVANCES IN APPLIED PROBABILITY, 2012, 44 (01) : 196 - 225
  • [4] Stability of piecewise-deterministic Markov processes
    Dufour, F
    Costa, OLV
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (05) : 1483 - 1502
  • [5] Stability of piecewise-deterministic Markov processes
    Dufour, François
    Costa, Oswaldo L. V.
    SIAM Journal on Control and Optimization, 37 (05): : 1483 - 1502
  • [6] Towards a theory of sampled data piecewise-deterministic Markov processes
    Herencia-Zapana, Heber
    Gonzalez, Oscar R.
    Gray, W. Steven
    PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 944 - 949
  • [7] A Piecewise-Deterministic Markov Model of Freeway Accidents
    Jin, Li
    Amin, Saurabh
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 1733 - 1740
  • [8] AVERAGING FOR A FULLY COUPLED PIECEWISE-DETERMINISTIC MARKOV PROCESS IN INFINITE DIMENSIONS
    Genadot, Alexandre
    Thieullen, Michele
    ADVANCES IN APPLIED PROBABILITY, 2012, 44 (03) : 749 - 773
  • [9] Subgeometric hypocoercivity for piecewise-deterministic Markov process Monte Carlo methods
    Andrieu, Christophe
    Dobson, Paul
    Wang, Andi Q.
    ELECTRONIC JOURNAL OF PROBABILITY, 2021, 26
  • [10] A RECURSIVE NONPARAMETRIC ESTIMATOR FOR THE TRANSITION KERNEL OF A PIECEWISE-DETERMINISTIC MARKOV PROCESS
    Azais, Romain
    ESAIM-PROBABILITY AND STATISTICS, 2014, 18 : 726 - 749