Common Data Elements, Scalable Data Management Infrastructure, and Analytics Workflows for Large-Scale Neuroimaging Studies

被引:6
|
作者
Kuplicki, Rayus [1 ]
Touthang, James [1 ]
Al Zoubi, Obada [1 ]
Mayeli, Ahmad [1 ]
Misaki, Masaya [1 ]
Aupperle, Robin L. [1 ,2 ]
Teague, T. Kent [3 ,4 ,5 ]
McKinney, Brett A. [6 ,7 ]
Paulus, Martin P. [1 ]
Bodurka, Jerzy [1 ,8 ]
机构
[1] Laureate Inst Brain Res, Tulsa, OK 74136 USA
[2] Univ Tulsa, Dept Community Med, Oxley Coll Hlth Sci, Tulsa, OK 74104 USA
[3] Univ Oklahoma, Dept Surg, Sch Community Med, Tulsa, OK USA
[4] Univ Oklahoma, Dept Psychiat, Sch Community Med, Tulsa, OK USA
[5] Oklahoma State Univ, Dept Biochem & Microbiol, Ctr Hlth Sci, Tulsa, OK USA
[6] Univ Tulsa, Dept Math, Tulsa, OK 74104 USA
[7] Univ Tulsa, Tandy Sch Comp Sci, Tulsa, OK 74104 USA
[8] Univ Oklahoma, Stephenson Sch Biomed Engn, Norman, OK 73019 USA
来源
FRONTIERS IN PSYCHIATRY | 2021年 / 12卷
基金
美国国家卫生研究院;
关键词
human brain; neuroimaging; multi-level assessment; large-scale studies; common data element; data processing pipelines; scalable analytics; bids format; MOTION CORRECTION; FMRI; ACCURATE; ROBUST;
D O I
10.3389/fpsyt.2021.682495
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Neuroscience studies require considerable bioinformatic support and expertise. Numerous high-dimensional and multimodal datasets must be preprocessed and integrated to create robust and reproducible analysis pipelines. We describe a common data elements and scalable data management infrastructure that allows multiple analytics workflows to facilitate preprocessing, analysis and sharing of large-scale multi-level data. The process uses the Brain Imaging Data Structure (BIDS) format and supports MRI, fMRI, EEG, clinical, and laboratory data. The infrastructure provides support for other datasets such as Fitbit and flexibility for developers to customize the integration of new types of data. Exemplar results from 200+ participants and 11 different pipelines demonstrate the utility of the infrastructure.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Supporting scalable and distributed data subsetting and aggregation in large-scale seismic data analysis
    Zhang, X.
    Rutt, B.
    Catalyuerek, U.
    Kurc, T.
    Stoffa, P.
    Sen, M.
    Saltz, J.
    INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2006, 20 (03): : 423 - 438
  • [42] Replicable brain–phenotype associations require large-scale neuroimaging data
    Shu Liu
    Abdel Abdellaoui
    Karin J. H. Verweij
    Guido A. van Wingen
    Nature Human Behaviour, 2023, 7 : 1344 - 1356
  • [43] The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data
    Thompson, Paul M.
    Stein, Jason L.
    Medland, Sarah E.
    Hibar, Derrek P.
    Vasquez, Alejandro Arias
    Renteria, Miguel E.
    Toro, Roberto
    Jahanshad, Neda
    Schumann, Gunter
    Franke, Barbara
    Wright, Margaret J.
    Martin, Nicholas G.
    Agartz, Ingrid
    Alda, Martin
    Alhusaini, Saud
    Almasy, Laura
    Almeida, Jorge
    Alpert, Kathryn
    Andreasen, Nancy C.
    Andreassen, Ole A.
    Apostolova, Liana G.
    Appel, Katja
    Armstrong, Nicola J.
    Aribisala, Benjamin
    Bastin, Mark E.
    Bauer, Michael
    Bearden, Carrie E.
    Bergmann, Orjan
    Binder, Elisabeth B.
    Blangero, John
    Bockholt, Henry J.
    Boen, Erlend
    Bois, Catherine
    Boomsma, Dorret I.
    Booth, Tom
    Bowman, Ian J.
    Bralten, Janita
    Brouwer, Rachel M.
    Brunner, Han G.
    Brohawn, David G.
    Buckner, Randy L.
    Buitelaar, Jan
    Bulayeva, Kazima
    Bustillo, Juan R.
    Calhoun, Vince D.
    Cannon, Dara M.
    Cantor, Rita M.
    Carless, Melanie A.
    Caseras, Xavier
    Cavalleri, Gianpiero L.
    BRAIN IMAGING AND BEHAVIOR, 2014, 8 (02) : 153 - 182
  • [44] Brain structure–function associations identified in large-scale neuroimaging data
    Zhi Yang
    Jiang Qiu
    Peipei Wang
    Rui Liu
    Xi-Nian Zuo
    Brain Structure and Function, 2016, 221 : 4459 - 4474
  • [45] A Scalable and Dependable Data Analytics Platform for Water Infrastructure Monitoring
    Lorenz, Felix
    Geldenhuys, Morgan
    Sommer, Harald
    Jakobs, Frauke
    Luering, Carsten
    Skwarek, Volker
    Behnke, Ilja
    Thamsen, Lauritz
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 3488 - 3493
  • [46] The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data
    Paul M. Thompson
    Jason L. Stein
    Sarah E. Medland
    Derrek P. Hibar
    Alejandro Arias Vasquez
    Miguel E. Renteria
    Roberto Toro
    Neda Jahanshad
    Gunter Schumann
    Barbara Franke
    Margaret J. Wright
    Nicholas G. Martin
    Ingrid Agartz
    Martin Alda
    Saud Alhusaini
    Laura Almasy
    Jorge Almeida
    Kathryn Alpert
    Nancy C. Andreasen
    Ole A. Andreassen
    Liana G. Apostolova
    Katja Appel
    Nicola J. Armstrong
    Benjamin Aribisala
    Mark E. Bastin
    Michael Bauer
    Carrie E. Bearden
    Ørjan Bergmann
    Elisabeth B. Binder
    John Blangero
    Henry J. Bockholt
    Erlend Bøen
    Catherine Bois
    Dorret I. Boomsma
    Tom Booth
    Ian J. Bowman
    Janita Bralten
    Rachel M. Brouwer
    Han G. Brunner
    David G. Brohawn
    Randy L. Buckner
    Jan Buitelaar
    Kazima Bulayeva
    Juan R. Bustillo
    Vince D. Calhoun
    Dara M. Cannon
    Rita M. Cantor
    Melanie A. Carless
    Xavier Caseras
    Gianpiero L. Cavalleri
    Brain Imaging and Behavior, 2014, 8 : 153 - 182
  • [47] Scalable Cooperative Caching with RDMA-Based Directory Management for Large-Scale Data Processing
    Arai, Junya
    Ishikawa, Yutaka
    2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC), 2012, : 1540 - 1540
  • [48] Scalable Cooperative Caching with RDMA-Based Directory Management for Large-Scale Data Processing
    Arai, Junya
    Ishikawa, Yutaka
    2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC), 2012, : 1538 - 1539
  • [49] A Data-Aware Scheduling Strategy for Executing Large-Scale Distributed Workflows
    Giampa, Salvatore
    Belcastro, Loris
    Marozzo, Fabrizio
    Talia, Domenico
    Trunfio, Paolo
    IEEE ACCESS, 2021, 9 : 47354 - 47364
  • [50] Effective ensemble learning approach for large-scale medical data analytics
    Namamula, Lakshmana Rao
    Chaytor, Daniel
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2024, 15 (01) : 13 - 20