Common Data Elements, Scalable Data Management Infrastructure, and Analytics Workflows for Large-Scale Neuroimaging Studies

被引:6
|
作者
Kuplicki, Rayus [1 ]
Touthang, James [1 ]
Al Zoubi, Obada [1 ]
Mayeli, Ahmad [1 ]
Misaki, Masaya [1 ]
Aupperle, Robin L. [1 ,2 ]
Teague, T. Kent [3 ,4 ,5 ]
McKinney, Brett A. [6 ,7 ]
Paulus, Martin P. [1 ]
Bodurka, Jerzy [1 ,8 ]
机构
[1] Laureate Inst Brain Res, Tulsa, OK 74136 USA
[2] Univ Tulsa, Dept Community Med, Oxley Coll Hlth Sci, Tulsa, OK 74104 USA
[3] Univ Oklahoma, Dept Surg, Sch Community Med, Tulsa, OK USA
[4] Univ Oklahoma, Dept Psychiat, Sch Community Med, Tulsa, OK USA
[5] Oklahoma State Univ, Dept Biochem & Microbiol, Ctr Hlth Sci, Tulsa, OK USA
[6] Univ Tulsa, Dept Math, Tulsa, OK 74104 USA
[7] Univ Tulsa, Tandy Sch Comp Sci, Tulsa, OK 74104 USA
[8] Univ Oklahoma, Stephenson Sch Biomed Engn, Norman, OK 73019 USA
来源
FRONTIERS IN PSYCHIATRY | 2021年 / 12卷
基金
美国国家卫生研究院;
关键词
human brain; neuroimaging; multi-level assessment; large-scale studies; common data element; data processing pipelines; scalable analytics; bids format; MOTION CORRECTION; FMRI; ACCURATE; ROBUST;
D O I
10.3389/fpsyt.2021.682495
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Neuroscience studies require considerable bioinformatic support and expertise. Numerous high-dimensional and multimodal datasets must be preprocessed and integrated to create robust and reproducible analysis pipelines. We describe a common data elements and scalable data management infrastructure that allows multiple analytics workflows to facilitate preprocessing, analysis and sharing of large-scale multi-level data. The process uses the Brain Imaging Data Structure (BIDS) format and supports MRI, fMRI, EEG, clinical, and laboratory data. The infrastructure provides support for other datasets such as Fitbit and flexibility for developers to customize the integration of new types of data. Exemplar results from 200+ participants and 11 different pipelines demonstrate the utility of the infrastructure.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Exploiting Scientific Workflows for Large-scale Gene Expression Data Analysis
    De Stasio, Alessandro
    Ertelt, Marcus
    Kemmner, Wolfgang
    Leser, Ulf
    Ceccarelli, Michele
    2009 24TH INTERNATIONAL SYMPOSIUM ON COMPUTER AND INFORMATION SCIENCES, 2009, : 447 - +
  • [32] Large-scale Data Integration for Facilities Analytics: Challenges and Opportunities
    Thumati, Balaje T.
    Subramania, Halasya Siva
    Shastri, Rajeev
    Kumar, Karthik Kalyana
    Hessner, Nicole
    Villa, Vincent
    Page, Aaron
    Followell, David
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 3532 - 3538
  • [33] Building and Operating a Large-Scale Enterprise Data Analytics Platform
    Bauer, Daniel
    Froese, Florian
    Garces-Erice, Luis
    Giblin, Chris
    Labbi, Abdel
    Nagy, Zoltan A.
    Pardon, Niels
    Rooney, Sean
    Urbanetz, Peter
    Vetsch, Pascal
    Wespi, Andreas
    BIG DATA RESEARCH, 2021, 23
  • [34] Riffle: Optimized Shuffle Service for Large-Scale Data Analytics
    Zhang, Haoyu
    Cho, Brian
    Seyfe, Ergin
    Ching, Avery
    Freedman, Michael J.
    EUROSYS '18: PROCEEDINGS OF THE THIRTEENTH EUROSYS CONFERENCE, 2018,
  • [35] Scalable and Robust Tensor Ring Decomposition for Large-scale Data
    He, Yicong
    Atia, George K.
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 860 - 869
  • [36] Scalable probabilistic PCA for large-scale genetic variation data
    Agrawal, Aman
    Chiu, Alec M.
    Le, Minh
    Halperin, Eran
    Sankararaman, Sriram
    PLOS GENETICS, 2020, 16 (05):
  • [37] Efficient Large-scale Medical Data (eHealth Big Data) Analytics in Internet of Things
    Plageras, Andreas P.
    Stergiou, Christos
    Kokkonis, George
    Psannis, Kostas E.
    Ishibashi, Yutaka
    Kim, Byung-Gyu
    Gupta, B. Brij
    2017 IEEE 19TH CONFERENCE ON BUSINESS INFORMATICS (CBI), VOL 2, 2017, 2 : 21 - 27
  • [38] iLCM - A Virtual Research Infrastructure for Large-Scale Qualitative Data
    Niekler, Andreas
    Bleier, Arnim
    Kahmann, Christian
    Posch, Lisa
    Wiedemann, Gregor
    Erdogan, Kenan
    Heyer, Gerhard
    Strohmaier, Markus
    PROCEEDINGS OF THE ELEVENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2018), 2018, : 1313 - 1319
  • [39] Hierarchical Management of Large-Scale Malware Data
    Kellogg, Lee
    Ruttenberg, Brian
    O'Connor, Alison
    Howard, Michael
    Pfeffer, Avi
    2014 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2014, : 666 - 674
  • [40] Reproducible Large-Scale Neuroimaging Studies with the OpenMOLE Workflow Management System
    Passerat-Palmbach, Jonathan
    Reuillon, Romain
    Leclaire, Mathieu
    Makropoulos, Antonios
    Robinson, Emma C.
    Parisot, Sarah
    Rueckert, Daniel
    FRONTIERS IN NEUROINFORMATICS, 2017, 11